Suppr超能文献

功能线性模型的结构化惩罚——回归的部分经验特征向量

Structured penalties for functional linear models-partially empirical eigenvectors for regression.

作者信息

Randolph Timothy W, Harezlak Jaroslaw, Feng Ziding

机构信息

Fred Hutchinson Cancer Research Center, Biostatistics and Biomathematics Program, Seattle, WA 98109.

出版信息

Electron J Stat. 2012 Jan 1;6:323-353. doi: 10.1214/12-EJS676.

Abstract

One of the challenges with functional data is incorporating geometric structure, or local correlation, into the analysis. This structure is inherent in the output from an increasing number of biomedical technologies, and a functional linear model is often used to estimate the relationship between the predictor functions and scalar responses. Common approaches to the problem of estimating a coefficient function typically involve two stages: regularization and estimation. Regularization is usually done via dimension reduction, projecting onto a predefined span of basis functions or a reduced set of eigenvectors (principal components). In contrast, we present a unified approach that directly incorporates geometric structure into the estimation process by exploiting the joint eigenproperties of the predictors and a linear penalty operator. In this sense, the components in the regression are 'partially empirical' and the framework is provided by the generalized singular value decomposition (GSVD). The form of the penalized estimation is not new, but the GSVD clarifies the process and informs the choice of penalty by making explicit the joint influence of the penalty and predictors on the bias, variance and performance of the estimated coefficient function. Laboratory spectroscopy data and simulations are used to illustrate the concepts.

摘要

功能数据面临的挑战之一是将几何结构或局部相关性纳入分析。这种结构在越来越多的生物医学技术的输出中是固有的,并且功能线性模型通常用于估计预测函数与标量响应之间的关系。估计系数函数问题的常见方法通常涉及两个阶段:正则化和估计。正则化通常通过降维来完成,投影到预定义的基函数跨度或一组简化的特征向量(主成分)上。相比之下,我们提出了一种统一的方法,通过利用预测变量和线性惩罚算子的联合特征属性,将几何结构直接纳入估计过程。从这个意义上说,回归中的成分是“部分经验性的”,并且该框架由广义奇异值分解(GSVD)提供。惩罚估计的形式并不新颖,但GSVD通过明确惩罚和预测变量对估计系数函数的偏差、方差和性能的联合影响,阐明了过程并为惩罚的选择提供了依据。实验室光谱数据和模拟用于说明这些概念。

相似文献

4
Longitudinal Functional Models with Structured Penalties.具有结构化惩罚的纵向功能模型
Stat Modelling. 2016 Apr;16(2):114-139. doi: 10.1177/1471082X15626291. Epub 2016 Feb 17.
5
Penalized solutions to functional regression problems.函数回归问题的惩罚解
Comput Stat Data Anal. 2007 Jun 15;51(10):4911-4925. doi: 10.1016/j.csda.2006.09.034.
6
A Path Algorithm for Constrained Estimation.一种用于约束估计的路径算法。
J Comput Graph Stat. 2013;22(2):261-283. doi: 10.1080/10618600.2012.681248.
9
Brain connectivity-informed regularization methods for regression.用于回归的脑连接性信息正则化方法。
Stat Biosci. 2019 Apr;11(1):47-90. doi: 10.1007/s12561-017-9208-x. Epub 2017 Dec 6.
10
Biclustering via sparse singular value decomposition.基于稀疏奇异值分解的双聚类
Biometrics. 2010 Dec;66(4):1087-95. doi: 10.1111/j.1541-0420.2010.01392.x.

引用本文的文献

5
Brain connectivity-informed regularization methods for regression.用于回归的脑连接性信息正则化方法。
Stat Biosci. 2019 Apr;11(1):47-90. doi: 10.1007/s12561-017-9208-x. Epub 2017 Dec 6.
7
KERNEL-PENALIZED REGRESSION FOR ANALYSIS OF MICROBIOME DATA.用于微生物组数据分析的核惩罚回归
Ann Appl Stat. 2018 Mar;12(1):540-566. doi: 10.1214/17-AOAS1102. Epub 2018 Mar 9.
9
Penalized nonparametric scalar-on-function regression via principal coordinates.通过主坐标进行惩罚非参数函数标量回归
J Comput Graph Stat. 2017;26(3):569-578. doi: 10.1080/10618600.2016.1217227. Epub 2016 Aug 2.
10
Methods for scalar-on-function regression.函数标量回归方法。
Int Stat Rev. 2017 Aug;85(2):228-249. doi: 10.1111/insr.12163. Epub 2016 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验