Suppr超能文献

模型支持的放射治疗个性化:超分割和低分割效应测试

Model-Supported Radiotherapy Personalization: Test of Hyper- and Hypo-Fractionation Effects.

作者信息

Belfatto Antonella, Jereczek-Fossa Barbara Alicja, Baroni Guido, Cerveri Pietro

机构信息

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.

出版信息

Front Physiol. 2018 Oct 15;9:1445. doi: 10.3389/fphys.2018.01445. eCollection 2018.

Abstract

The need for radiotherapy personalization is now widely recognized, however, it would require considerations not only on the probability of control and survival of the tumor, but also on the possible toxic effects, on the quality of the expected life and the economic efficiency of the treatment. In this paper, we propose a simulation tool that can be integrated into a decision support system that allows selection of the most suitable irradiation regimen. We used a macroscale mathematical model, which includes active and necrotic tumor dynamics and the role of oxygenation to simulate the effects of different hypo-/hyper-fractional regimens using retrospective data of seven virtual patients from as many cervical cancer patients used for its training in a previous study. The results confirmed the heterogeneous response across the patients as a function of treatment regimen and suggested the tumor growth rate as a main factor in the final tumor regression. In addition to the maximum regression, another criterion was suggested to select the most suitable regimen (minimum number of fractions to achieve a regression of 80%) minimizing the toxicity and maximizing the cost-effectiveness ratio. Despite the lack of direct validation, the simulation results are in agreement with the literature findings that suggest the need for hypo-fractionated regimens in case of aggressive tumor phenotypes. Finally, the paper suggests a possible exploitation of the model within a tool to support clinical decisions.

摘要

如今,放疗个性化的需求已得到广泛认可,然而,这不仅需要考虑肿瘤的控制概率和生存率,还需考虑可能的毒性作用、预期生活质量以及治疗的经济效率。在本文中,我们提出了一种可集成到决策支持系统中的模拟工具,该系统能够选择最合适的照射方案。我们使用了一个宏观数学模型,该模型包括活跃和坏死肿瘤动力学以及氧合作用的角色,利用先前研究中用于模型训练的来自七名宫颈癌患者的虚拟患者回顾性数据,模拟不同低分割/超分割方案的效果。结果证实了患者之间因治疗方案而异的异质性反应,并表明肿瘤生长速率是最终肿瘤消退的主要因素。除了最大消退率外,还提出了另一个标准来选择最合适的方案(达到80%消退所需的最少分割次数),以最小化毒性并最大化成本效益比。尽管缺乏直接验证,但模拟结果与文献研究结果一致,这些研究结果表明在肿瘤表型侵袭性较强的情况下需要采用低分割方案。最后,本文提出了在支持临床决策的工具中对该模型进行可能应用的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dd0/6197078/484dfd934a42/fphys-09-01445-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验