Department of Materials Science and Engineering, Hongik University 72-1, Sangsu-dong, Mapo-gu, Seoul 04066, Korea.
Nanoscale. 2018 Nov 8;10(43):20377-20383. doi: 10.1039/c8nr06820h.
We fabricated a zinc oxide (ZnO)/methylammonium lead iodide (MAPbI3) perovskite/ZnO field effect transistor (FET) test platform device through which ZnO/perovskite interfacial contact properties can be probed in the dark and under illumination. Using pulsed laser deposition, highly conductive (0.014 Ω cm) ZnO source and drain electrodes were fabricated allowing for the investigation of the interfacial charge transfer properties through current-voltage characteristics of a ZnO/perovskite/ZnO FET. With a bottom-contact FET device, gate voltage dependent current hysteresis in the drain current-gate voltage curves was probed at low temperature to minimize the effect of ion migration on electronic charge transport in the perovskite layer. Under illumination, importantly, ZnO/perovskite electrical contact properties were significantly altered due to electronic energy barrier change at the interface arising from the detrapping of electrons from the ZnO/perovskite interface, resulting in an enhanced dark current and a suppressed photocurrent. The origin of current hysteresis in the ZnO/perovskite/ZnO FET device is discussed relating it to interfacial charging/discharging associated with ultraviolet (UV)-induced oxygen adsorption/desorption. The results presented herein demonstrate that interfacial electronic properties at the donor (perovskite)/acceptor (ZnO) interface can be altered by photoinduced carrier trapping/detrapping, providing insights that UV-induced persistent photoconduction in transition metal oxide electron transport layers including ZnO may be contributing to the current hysteresis observed in the perovskite photovoltaic devices.
我们通过制造氧化锌 (ZnO)/甲脒碘化铅 (MAPbI3) 钙钛矿/氧化锌场效应晶体管 (FET) 测试平台设备,研究了在黑暗中和光照下 ZnO/钙钛矿界面接触特性。通过脉冲激光沉积,制造了高导电性 (0.014 Ω cm) ZnO 源极和漏极,这使得我们可以通过 ZnO/钙钛矿/ZnO FET 的电流-电压特性来研究界面电荷转移特性。采用底接触 FET 器件,在低温下探测了漏极电流-栅极电压曲线中的栅极电压依赖电流滞后,以最小化离子迁移对钙钛矿层中电子电荷输运的影响。在光照下,重要的是,由于 ZnO/钙钛矿界面处电子的去捕获导致的电子能垒变化,ZnO/钙钛矿电接触特性发生了显著变化,导致暗电流增强和光电流抑制。讨论了 ZnO/钙钛矿/ZnO FET 器件中电流滞后的起源,它与与紫外 (UV) 诱导的氧吸附/解吸相关的界面充电/放电有关。本文的结果表明,施主 (钙钛矿)/受主 (ZnO) 界面的界面电子特性可以通过光致载流子捕获/去捕获来改变,这为理解包括 ZnO 在内的过渡金属氧化物电子传输层中 UV 诱导的持久光电导可能导致钙钛矿光伏器件中观察到的电流滞后提供了线索。