Charles Institute of Dermatology, School of Medicine , University College Dublin , Belfield, Dublin 4 , Ireland.
Molecular and Cellular Biology, Specialty Skin Biology, Department of Biology , Claude Bernard University Lyon I , 69622 , France.
ACS Appl Mater Interfaces. 2018 Nov 21;10(46):39494-39504. doi: 10.1021/acsami.8b15006. Epub 2018 Nov 12.
Synthetic reactive oxygen species (ROS)-responsive biomaterials have emerged as a useful platform for regulating critical aspects of ROS-induced pathologies and can improve such hostile microenvironments. Here, we report a series of new hyperbranched poly(β-hydrazide ester) macromers (HB-PBHEs) with disulfide moieties synthesized via an "A2 + B4" Michael addition approach. The three-dimensional structure of HB-PBHEs with multiacrylate end groups endows the macromers with rapid gelation capabilities to form (1) injectable hydrogels via cross-linking with thiolated hyaluronic acid and (2) robust UV-cross-linked hydrogels. The disulfide-containing macromers and hydrogels exhibit HO-responsive degradation compared with the counterparts synthesized by a dihydrazide monomer without disulfide moieties. The cell viability under a high ROS environment can be well-maintained under the protection of the disulfide containing hydrogels.
合成的反应性氧物种(ROS)响应生物材料已成为调节 ROS 诱导的病理学关键方面的有用平台,并可以改善这种恶劣的微环境。在这里,我们报告了一系列通过“A2 + B4”迈克尔加成方法合成的具有二硫键部分的新型超支化聚(β-腙酯)大分子单体(HB-PBHEs)。具有多丙烯酸酯端基的 HB-PBHEs 的三维结构赋予大分子单体快速凝胶化能力,可通过与巯基化透明质酸交联形成(1)可注射水凝胶和(2)坚固的 UV 交联水凝胶。与不含二硫键部分的二酰肼单体合成的对应物相比,含二硫键的大分子单体和水凝胶表现出对 HO 的响应性降解。在含二硫键水凝胶的保护下,高 ROS 环境下的细胞活力可以得到很好的维持。