Williams Elsie M, Jung Se Min, Coffman Jennifer L, Lutz Stefan
Department of Chemistry , Emory University , 1515 Dickey Drive , Atlanta , Georgia 30084 , United States.
ACS Synth Biol. 2018 Nov 16;7(11):2514-2517. doi: 10.1021/acssynbio.8b00295. Epub 2018 Nov 1.
Encapsulins are robust and engineerable proteins that form hollow, nanosized, icosahedral capsids, making them attractive vehicles for drug delivery, scaffolds for synthetic bionanoreactors, and artificial organelles. A major limitation of native encapsulins is the small size of pores in the protein shell. At 3 Å diameter, these pores impose significant restrictions on the molecular weight and diffusion rate of potential substrates. By redesigning the pore-forming loop region in encapsulin from Thermotoga maritima, we successfully enlarged pore diameter up to an estimated 11 Å and increased mass transport rates by 7-fold as measured by lanthanide ion diffusion assay. Our study demonstrates the high tolerance of encapsulin for protein engineering and has created a set of novel, functionally improved scaffolds for applications as bionanoreactors.
封装蛋白是一种坚固且可工程化的蛋白质,可形成中空的、纳米尺寸的二十面体衣壳,使其成为药物递送的理想载体、合成生物纳米反应器的支架以及人工细胞器。天然封装蛋白的一个主要限制是蛋白质外壳中的孔尺寸较小。这些孔的直径为3埃,对潜在底物的分子量和扩散速率施加了重大限制。通过重新设计来自嗜热栖热菌的封装蛋白中的成孔环区域,我们成功地将孔径扩大到估计的11埃,并通过镧系离子扩散测定法测得质量传输速率提高了7倍。我们的研究证明了封装蛋白对蛋白质工程具有高度耐受性,并创建了一组新型的、功能改进的支架,用于作为生物纳米反应器的应用。