Suppr超能文献

基于 StarPEG/肝素水凝胶的体内工程化双层软骨,具有钙化底层。

StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer.

机构信息

Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany.

出版信息

Biofabrication. 2018 Oct 30;11(1):015001. doi: 10.1088/1758-5090/aae75a.

Abstract

Repaired cartilage tissue lacks the typical zonal structure of healthy native cartilage needed for appropriate function. Current grafts for treatment of full thickness cartilage defects focus primarily on a nonzonal design and this may be a reason why inferior nonzonal regeneration tissue developed in vivo. No biomaterial-based solutions have been developed so far to induce a proper zonal architecture into a non-mineralized and a calcified cartilage layer. The objective was to grow bizonal cartilage with a calcified cartilage bottom zone wherein main tissue development is occurring in vivo. We hypothesized that starPEG/heparin-hydrogel owing to the glycosaminoglycan heparin contained as a building-block would prevent mineralization of the upper cartilage zone and be beneficial in inhibiting long-term progression of calcified cartilage into bone. MSCs were pre-cultured as self-assembling non-mineralized cell discs before a chondrocyte-seeded fibrin- or starPEG/heparin-hydrogel layer was cast on top directly before ectopic implantation. Bizonal cartilage with a calcified bottom-layer developed in vivo showing stronger mineralization compared to in vitro samples, but the hydrogel strongly determined outcome. Zonal fibrin-constructs lost volume and allowed non-organized expansion of collagen type X, ALP-activity and mineralization from the bottom-layer into upper regions, whereas zonal starPEG/heparin-constructs were of stable architecture. While non-zonal MSCs-derived discs formed bone over 12 weeks, the starPEG/heparin-chondrocyte layer prevented further progression of calcified cartilage into bone tissue. Conclusively, starPEG/heparin-hydrogel-controlled and cell-type mediated spatiotemporal regulation allowed in vivo growth of bizonal cartilage with a stable calcified cartilage layer. Altogether our work is an important milestone encouraging direct in vivo growth of organized cartilage after biofabrication.

摘要

修复的软骨组织缺乏健康的天然软骨所需的典型分区结构,而这种分区结构是适当功能所必需的。目前用于治疗全层软骨缺损的移植物主要集中在非分区设计上,这可能也是为什么体内会产生较差的非分区再生组织的原因。到目前为止,还没有基于生物材料的解决方案来诱导适当的分区结构进入非矿化和钙化软骨层。本研究的目的是生长具有钙化软骨底层的双区软骨,其中主要组织在体内发生。我们假设,由于包含作为构建块的糖胺聚糖肝素,starPEG/肝素水凝胶将防止上层软骨区的矿化,并有利于抑制钙化软骨向骨的长期进展。MSC 首先在体外预培养为自组装的非矿化细胞盘,然后在异位植入前直接在其上浇铸纤维蛋白或 starPEG/肝素水凝胶层。体内形成的具有钙化底层的双区软骨的矿化程度明显高于体外样本,但水凝胶对结果的影响很大。具有钙化底层的纤维蛋白构建体体积减小,并允许从底层向上层区域非组织化地扩展胶原 X、碱性磷酸酶活性和矿化,而具有钙化底层的 starPEG/肝素构建体则保持稳定的结构。虽然非分区 MSC 衍生的软骨盘在 12 周内形成了骨,但 starPEG/肝素-软骨细胞层阻止了钙化软骨向骨组织的进一步进展。总之,starPEG/肝素水凝胶控制和细胞类型介导的时空调节允许在体内生长具有稳定钙化软骨层的双区软骨。总的来说,我们的工作是一个重要的里程碑,鼓励在生物制造后直接在体内生长组织有序的软骨。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验