Surgical Information Sciences, Inc., Minneapolis, Minnesota.
Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota.
Hum Brain Mapp. 2019 Feb 1;40(2):679-698. doi: 10.1002/hbm.24404. Epub 2018 Oct 31.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has shown clinical potential for relieving the motor symptoms of advanced Parkinson's disease. While accurate localization of the STN is critical for consistent across-patients effective DBS, clear visualization of the STN under standard clinical MR protocols is still challenging. Therefore, intraoperative microelectrode recordings (MER) are incorporated to accurately localize the STN. However, MER require significant neurosurgical expertise and lengthen the surgery time. Recent advances in 7 T MR technology facilitate the ability to clearly visualize the STN. The vast majority of centers, however, still do not have 7 T MRI systems, and fewer have the ability to collect and analyze the data. This work introduces an automatic STN localization framework based on standard clinical MRIs without additional cost in the current DBS planning protocol. Our approach benefits from a large database of 7 T MRI and its clinical MRI pairs. We first model in the 7 T database, using efficient machine learning algorithms, the spatial and geometric dependency between the STN and its adjacent structures (predictors). Given a standard clinical MRI, our method automatically computes the predictors and uses the learned information to predict the patient-specific STN. We validate our proposed method on clinical T W MRI of 80 subjects, comparing with experts-segmented STNs from the corresponding 7 T MRI pairs. The experimental results show that our framework provides more accurate and robust patient-specific STN localization than using state-of-the-art atlases. We also demonstrate the clinical feasibility of the proposed technique assessing the post-operative electrode active contact locations.
深部脑刺激(DBS)对丘脑底核(STN)的刺激显示出缓解晚期帕金森病运动症状的临床潜力。虽然 STN 的准确定位对于跨患者的一致有效 DBS 至关重要,但在标准临床磁共振(MR)协议下清晰显示 STN 仍然具有挑战性。因此,术中微电极记录(MER)被纳入以准确定位 STN。然而,MER 需要大量的神经外科专业知识,并且延长了手术时间。最近在 7 T MR 技术方面的进展使得能够清晰地可视化 STN。然而,绝大多数中心仍然没有 7 T MRI 系统,并且更少的中心有能力收集和分析数据。这项工作引入了一种基于标准临床 MRI 的自动 STN 定位框架,而无需在当前的 DBS 规划协议中增加额外的成本。我们的方法受益于一个大型的 7 T MRI 及其临床 MRI 对数据库。我们首先在 7 T 数据库中进行建模,使用高效的机器学习算法,在 STN 及其相邻结构之间建立空间和几何依赖性(预测器)。给定标准临床 MRI,我们的方法自动计算预测器,并使用学习到的信息预测患者特异性的 STN。我们在 80 名患者的临床 T1W MRI 上验证了我们的方法,与来自相应的 7 T MRI 对的专家分割的 STN 进行比较。实验结果表明,与使用最先进的图谱相比,我们的框架提供了更准确和稳健的患者特异性 STN 定位。我们还展示了评估术后电极有效接触位置的所提出技术的临床可行性。