Suppr超能文献

连通性可预测帕金森病深部脑刺激的效果。

Connectivity Predicts deep brain stimulation outcome in Parkinson disease.

作者信息

Horn Andreas, Reich Martin, Vorwerk Johannes, Li Ningfei, Wenzel Gregor, Fang Qianqian, Schmitz-Hübsch Tanja, Nickl Robert, Kupsch Andreas, Volkmann Jens, Kühn Andrea A, Fox Michael D

机构信息

Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.

Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité-Universitätsmedizin, Berlin, Germany.

出版信息

Ann Neurol. 2017 Jul;82(1):67-78. doi: 10.1002/ana.24974.

Abstract

OBJECTIVE

The benefit of deep brain stimulation (DBS) for Parkinson disease (PD) may depend on connectivity between the stimulation site and other brain regions, but which regions and whether connectivity can predict outcome in patients remain unknown. Here, we identify the structural and functional connectivity profile of effective DBS to the subthalamic nucleus (STN) and test its ability to predict outcome in an independent cohort.

METHODS

A training dataset of 51 PD patients with STN DBS was combined with publicly available human connectome data (diffusion tractography and resting state functional connectivity) to identify connections reliably associated with clinical improvement (motor score of the Unified Parkinson Disease Rating Scale [UPDRS]). This connectivity profile was then used to predict outcome in an independent cohort of 44 patients from a different center.

RESULTS

In the training dataset, connectivity between the DBS electrode and a distributed network of brain regions correlated with clinical response including structural connectivity to supplementary motor area and functional anticorrelation to primary motor cortex (p < 0.001). This same connectivity profile predicted response in an independent patient cohort (p < 0.01). Structural and functional connectivity were independent predictors of clinical improvement (p < 0.001) and estimated response in individual patients with an average error of 15% UPDRS improvement. Results were similar using connectome data from normal subjects or a connectome age, sex, and disease matched to our DBS patients.

INTERPRETATION

Effective STN DBS for PD is associated with a specific connectivity profile that can predict clinical outcome across independent cohorts. This prediction does not require specialized imaging in PD patients themselves. Ann Neurol 2017;82:67-78.

摘要

目的

深部脑刺激(DBS)治疗帕金森病(PD)的益处可能取决于刺激部位与其他脑区之间的连接性,但哪些脑区以及这种连接性能否预测患者的治疗结果仍不清楚。在此,我们确定了对丘脑底核(STN)进行有效DBS的结构和功能连接图谱,并在一个独立队列中测试其预测治疗结果的能力。

方法

将51例接受STN DBS治疗的PD患者的训练数据集与公开可用的人类连接组数据(弥散张量纤维束成像和静息态功能连接)相结合,以确定与临床改善(统一帕金森病评定量表[UPDRS]运动评分)可靠相关的连接。然后,使用这种连接图谱来预测来自不同中心的44例患者的独立队列的治疗结果。

结果

在训练数据集中,DBS电极与一个分布式脑区网络之间的连接与临床反应相关,包括与辅助运动区的结构连接以及与初级运动皮层的功能反相关(p<0.001)。相同的连接图谱在一个独立的患者队列中预测了反应(p<0.01)。结构和功能连接是临床改善的独立预测因子(p<0.001),并估计了个体患者的反应,平均误差为UPDRS改善的15%。使用来自正常受试者的连接组数据或与我们的DBS患者年龄、性别和疾病匹配的连接组,结果相似。

解读

对PD有效的STN DBS与一种特定的连接图谱相关,该图谱可以预测独立队列中的临床结果。这种预测不需要对PD患者本身进行专门的成像检查。《神经病学纪事》2017年;82:67-78。

相似文献

引用本文的文献

10
Electrical Stimulation of Cells: Drivers, Technology, and Effects.细胞的电刺激:驱动因素、技术及效应
Chem Rev. 2025 Aug 13;125(15):6874-6905. doi: 10.1021/acs.chemrev.4c00468. Epub 2025 Jul 17.

本文引用的文献

7
A human brain network derived from coma-causing brainstem lesions.源自导致昏迷的脑干病变的人类脑网络。
Neurology. 2016 Dec 6;87(23):2427-2434. doi: 10.1212/WNL.0000000000003404. Epub 2016 Nov 4.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验