Suppr超能文献

视觉引导眼动的神经生理学:批判性综述与另一种观点

Neurophysiology of visually guided eye movements: critical review and alternative viewpoint.

作者信息

Goffart Laurent, Bourrelly Clara, Quinton Jean-Charles

机构信息

Aix Marseille Université, Centre National de la Recherche Scientifique, Institut de Neurosciences de la Timone, Marseille, France.

Aix Marseille Université, Centre National de la Recherche Scientifique, Centre Gilles Gaston Granger, Aix-en-Provence, France.

出版信息

J Neurophysiol. 2018 Dec 1;120(6):3234-3245. doi: 10.1152/jn.00402.2018. Epub 2018 Oct 31.

Abstract

In this article, we perform a critical examination of assumptions that led to the assimilation of measurements of the movement of a rigid body in the physical world to parameters encoded within brain activity. In many neurophysiological studies of goal-directed eye movements, equivalence has indeed been made between the kinematics of the eyes or of a targeted object and the associated neuronal processes. Such a way of proceeding brings up the reduction encountered in projective geometry when a multidimensional object is being projected onto a one-dimensional segment. The measurement of a movement indeed consists of generation of a series of numerical values from which magnitudes such as amplitude, duration, and their ratio (speed) are calculated. By contrast, movement generation consists of activation of multiple parallel channels in the brain. Yet, for many years, kinematic parameters were supposed to be encoded in brain activity, even though the neuronal image of most physical events is distributed both spatially and temporally. After explaining why the "neuronalization" of such parameters is questionable for elucidating the neural processes underlying the execution of saccadic and pursuit eye movements, we propose an alternative to the framework that has dominated the last five decades. A viewpoint is presented in which these processes follow principles that are defined by intrinsic properties of the brain (population coding, multiplicity of transmission delays, synchrony of firing, connectivity). We propose reconsideration of the time course of saccadic and pursuit eye movements as the restoration of equilibria between neural populations that exert opposing motor tendencies.

摘要

在本文中,我们对一些假设进行了批判性审视,这些假设导致了将物理世界中刚体运动的测量等同于大脑活动中编码的参数。在许多关于目标导向性眼动的神经生理学研究中,确实在眼睛或目标物体的运动学与相关的神经元过程之间建立了等效关系。这种做法带来了射影几何中遇到的一种简化情况,即当一个多维物体被投影到一维线段上时的情况。运动的测量实际上包括生成一系列数值,从中计算出诸如幅度、持续时间及其比率(速度)等大小。相比之下,运动的产生是由大脑中多个并行通道的激活组成的。然而,多年来,运动学参数一直被认为是编码在大脑活动中的,尽管大多数物理事件的神经元图像在空间和时间上都是分布的。在解释了为什么这种参数的“神经元化”对于阐明扫视和追踪眼动执行背后的神经过程存在疑问之后,我们提出了一个替代过去五十年来占主导地位的框架的方案。我们提出了一种观点,即这些过程遵循由大脑的内在属性(群体编码、传输延迟的多样性、放电同步性、连接性)所定义的原则。我们建议重新考虑扫视和追踪眼动的时间进程,将其视为施加相反运动倾向的神经群体之间平衡的恢复。

相似文献

1
Neurophysiology of visually guided eye movements: critical review and alternative viewpoint.
J Neurophysiol. 2018 Dec 1;120(6):3234-3245. doi: 10.1152/jn.00402.2018. Epub 2018 Oct 31.
2
Kinematics and the neurophysiological study of visually-guided eye movements.
Prog Brain Res. 2019;249:375-384. doi: 10.1016/bs.pbr.2019.03.027. Epub 2019 Apr 16.
3
Eye-head coordination and the variation of eye-movement accuracy with orbital eccentricity.
Exp Brain Res. 2001 Jan;136(2):200-10. doi: 10.1007/s002210000593.
4
Activity of substantia nigra pars reticulata neurons during smooth pursuit eye movements in monkeys.
Eur J Neurosci. 2005 Jul;22(2):448-64. doi: 10.1111/j.1460-9568.2005.04215.x.
5
Differential effects of blinks on horizontal saccade and smooth pursuit initiation in humans.
Exp Brain Res. 2004 Jun;156(3):314-24. doi: 10.1007/s00221-003-1791-z. Epub 2004 Feb 14.
6
Saccadic and smooth-pursuit eye movements during reading of drifting texts.
J Vis. 2013 Aug 16;13(10):8. doi: 10.1167/13.10.8.
7
Saccadic and smooth pursuit eye movements: computational modeling of a common inhibitory mechanism in brainstem.
Neurosci Lett. 2008 Dec 19;448(1):84-9. doi: 10.1016/j.neulet.2008.10.019. Epub 2008 Oct 14.
8
Eye movement influences on coupled and decoupled eye-hand coordination tasks.
Exp Brain Res. 2021 Aug;239(8):2477-2488. doi: 10.1007/s00221-021-06138-0. Epub 2021 Jun 11.
10
Cancelling of pursuit and saccadic eye movements in humans and monkeys.
J Neurophysiol. 2003 Jun;89(6):2984-99. doi: 10.1152/jn.00859.2002.

引用本文的文献

1
Saccade Dynamics in the Acute and Recovery Phase of Abducens Nerve Palsy.
J Ophthalmic Vis Res. 2024 Dec 31;19(4):449-458. doi: 10.18502/jovr.v19i4.14429. eCollection 2024 Dec.

本文引用的文献

1
Pursuit disorder and saccade dysmetria after caudal fastigial inactivation in the monkey.
J Neurophysiol. 2018 Oct 1;120(4):1640-1654. doi: 10.1152/jn.00278.2018. Epub 2018 Jul 11.
2
Smooth Pursuit Eye Movement of Monkeys Naive to Laboratory Setups With Pictures and Artificial Stimuli.
Front Syst Neurosci. 2018 Apr 17;12:15. doi: 10.3389/fnsys.2018.00015. eCollection 2018.
3
The caudal fastigial nucleus and the steering of saccades toward a moving visual target.
J Neurophysiol. 2018 Aug 1;120(2):421-438. doi: 10.1152/jn.00141.2018. Epub 2018 Apr 11.
4
Synchronizing the tracking eye movements with the motion of a visual target: Basic neural processes.
Prog Brain Res. 2017;236:243-268. doi: 10.1016/bs.pbr.2017.07.009. Epub 2017 Sep 19.
5
Space and time in the brain.
Science. 2017 Oct 27;358(6362):482-485. doi: 10.1126/science.aan8869.
6
The superior colliculus and the steering of saccades toward a moving visual target.
J Neurophysiol. 2017 Nov 1;118(5):2890-2901. doi: 10.1152/jn.00506.2017. Epub 2017 Sep 13.
7
Removal of inhibition uncovers latent movement potential during preparation.
Elife. 2017 Sep 11;6:e29648. doi: 10.7554/eLife.29648.
8
A spiking neural network model of the midbrain superior colliculus that generates saccadic motor commands.
Biol Cybern. 2017 Aug;111(3-4):249-268. doi: 10.1007/s00422-017-0719-9. Epub 2017 May 20.
9
Neuronal control of fixation and fixational eye movements.
Philos Trans R Soc Lond B Biol Sci. 2017 Apr 19;372(1718). doi: 10.1098/rstb.2016.0205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验