Goffart Laurent, Bourrelly Clara, Quinet Julie
Institut de Neurosciences de la Timone, UMR 7289, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.
Institut de Neurosciences de la Timone, UMR 7289, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France; Laboratoire Psychologie de la Perception, UMR 8242, Centre National de la Recherche Scientifique, Université Paris Descartes, Paris, France.
Prog Brain Res. 2017;236:243-268. doi: 10.1016/bs.pbr.2017.07.009. Epub 2017 Sep 19.
In primates, the appearance of an object moving in the peripheral visual field elicits an interceptive saccade that brings the target image onto the foveae. This foveation is then maintained more or less efficiently by slow pursuit eye movements and subsequent catch-up saccades. Sometimes, the tracking is such that the gaze direction looks spatiotemporally locked onto the moving object. Such a spatial synchronism is quite spectacular when one considers that the target-related signals are transmitted to the motor neurons through multiple parallel channels connecting separate neural populations with different conduction speeds and delays. Because of the delays between the changes of retinal activity and the changes of extraocular muscle tension, the maintenance of the target image onto the fovea cannot be driven by the current retinal signals as they correspond to past positions of the target. Yet, the spatiotemporal coincidence observed during pursuit suggests that the oculomotor system is driven by a command estimating continuously the current location of the target, i.e., where it is here and now. This inference is also supported by experimental perturbation studies: when the trajectory of an interceptive saccade is experimentally perturbed, a correction saccade is produced in flight or after a short delay, and brings the gaze next to the location where unperturbed saccades would have landed at about the same time, in the absence of visual feedback. In this chapter, we explain how such correction can be supported by previous visual signals without assuming "predictive" signals encoding future target locations. We also describe the basic neural processes which gradually yield the synchronization of eye movements with the target motion. When the process fails, the gaze is driven by signals related to past locations of the target, not by estimates to its upcoming locations, and a catch-up is made to reinitiate the synchronization.
在灵长类动物中,在周边视野中移动的物体的出现会引发拦截性扫视,使目标图像落在中央凹上。然后,通过缓慢的追踪眼动和随后的追赶性扫视,或多或少有效地维持这种中央凹注视。有时,追踪的情况是,注视方向在时空上看起来锁定在移动的物体上。当考虑到与目标相关的信号通过多个并行通道传输到运动神经元,这些通道连接着具有不同传导速度和延迟的不同神经群体时,这种空间同步现象就相当惊人了。由于视网膜活动变化和眼外肌张力变化之间存在延迟,中央凹上目标图像的维持不能由当前的视网膜信号驱动,因为它们对应于目标的过去位置。然而,在追踪过程中观察到的时空一致性表明,眼球运动系统是由一个连续估计目标当前位置的指令驱动的,即目标此时此地的位置。这一推断也得到了实验性扰动研究的支持:当拦截性扫视的轨迹受到实验性扰动时,会在飞行中或短时间延迟后产生校正性扫视,并使注视点移到在没有视觉反馈的情况下,未受扰动的扫视大约会在同一时间着陆的位置附近。在本章中,我们将解释如何在不假设编码未来目标位置的“预测”信号的情况下,由先前的视觉信号支持这种校正。我们还将描述逐渐使眼球运动与目标运动同步的基本神经过程。当这个过程失败时,注视由与目标过去位置相关的信号驱动,而不是由对其即将到来位置的估计驱动,然后进行追赶以重新启动同步。