Opt Lett. 2018 Nov 1;43(21):5323-5326. doi: 10.1364/OL.43.005323.
Herein, a novel design concept of a surface graphical photonic crystal (SGPC) has been proposed as an effective strategy to achieve angle-insensitive visible-infrared compatible camouflage. The SGPC, designed as a quasi-periodic Ge/ZnS photonic crystal following an arithmetic sequence in the physical thickness for each period, possesses a functionalized ZnS surface consisting of lithography-fabricated mosaic patterns with various etching depths. Our experiment data demonstrate the excellent infrared camouflage capability of the SGPC with a high average reflectance of 92.7% (surface emissivity ϵ=0.07) in 8-14 μm, and related simulations further reveal the satisfying angle-insensitive reflection characteristic with a maximum effective relative photonic bandgap δ=91.3% in 0°≤θ≤60°. Besides, the irregular mosaic patterns with various etching depths constitute a colorful digital camouflage on the surface of the SGPC, realizing an outstanding optical camouflage capacity without distinct angle dependency (dominant wavelength shift δ=|λ-λ|/λ≤2.33%).
本文提出了一种新颖的表面图形光子晶体 (SGPC) 设计概念,作为实现角度不敏感可见-红外兼容伪装的有效策略。所设计的 SGPC 作为一种具有算术序列物理厚度的准周期 Ge/ZnS 光子晶体,具有由具有不同蚀刻深度的光刻制造的镶嵌图案组成的功能化 ZnS 表面。实验数据表明,SGPC 具有出色的红外伪装能力,在 8-14 μm 范围内平均反射率高达 92.7%(表面发射率 ε=0.07),相关模拟进一步揭示了令人满意的角度不敏感反射特性,在 0°≤θ≤60°范围内最大有效相对光子带隙 δ=91.3%。此外,具有不同蚀刻深度的不规则镶嵌图案在 SGPC 表面构成了丰富多彩的数字伪装,实现了出色的光学伪装能力,且没有明显的角度依赖性(主导波长偏移 δ=|λ-λ|/λ≤2.33%)。