Ding Dawei, He Xiaoping, Liang Shijie, Wei Wenjing, Ding Shujiang
School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
ACS Appl Mater Interfaces. 2022 Jun 1;14(21):24690-24696. doi: 10.1021/acsami.2c03509. Epub 2022 May 22.
Progressive advancement in modern detection technologies entails multispectral compatible camouflage. Previously, infrared camouflage materials, such as photonic crystals and metamaterials, have been developed, but improved multispectral compatibility, easy fabrication, and cost-effectiveness remain a challenge. Here, we report a nanostructured composite film based on oxalate-rich porous alumina (OPA) for visible-to-infrared compatible camouflage and simultaneous thermal management. The nanostructured composite film consists of a visible-transparent OPA layer, a composite layer of OPA/metal oxides, and an aluminum substrate. Each functional layer exhibits desirable reflection/emission properties for infrared and visible camouflage. Infrared camouflage is realized by the high reflection (low emission) of the metal substrate in both infrared-detected bands (3-5 and 8-14 μm). Meanwhile, radiative cooling arising from the intrinsic absorption of oxalate in the undetected band (5-8 μm) enhances surface heat dissipation. In addition, background-matching colors can be tuned by the metal oxides in the composite layer for visible camouflage, such as green for forest and brown for desert. This work provides a facile strategy to modulate multispectral absorption/emission properties with much flexibility and thus has great potential for energy conversion and stealth applications.
现代探测技术的不断进步需要多光谱兼容伪装。此前,已经开发出了红外伪装材料,如光子晶体和超材料,但提高多光谱兼容性、易于制造和成本效益仍然是一个挑战。在此,我们报道了一种基于富草酸盐多孔氧化铝(OPA)的纳米结构复合膜,用于可见光到红外兼容伪装和同时进行热管理。该纳米结构复合膜由可见光透明的OPA层、OPA/金属氧化物复合层和铝基板组成。每个功能层都表现出用于红外和可见光伪装的理想反射/发射特性。红外伪装是通过金属基板在两个红外探测波段(3-5和8-14μm)的高反射(低发射)实现的。同时,在未探测波段(5-8μm)中草酸盐的固有吸收产生的辐射冷却增强了表面散热。此外,复合层中的金属氧化物可调节背景匹配颜色以实现可见光伪装,例如森林的绿色和沙漠的棕色。这项工作提供了一种简便的策略来灵活调节多光谱吸收/发射特性,因此在能量转换和隐身应用方面具有巨大潜力。