Suppr超能文献

基于噪声估计和迁移学习的适用于低剂量 CT 的域自适应去噪网络。

Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning.

机构信息

Institute of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, China.

Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.

出版信息

Med Phys. 2023 Jan;50(1):74-88. doi: 10.1002/mp.15952. Epub 2022 Sep 2.

Abstract

BACKGROUND

In recent years, low-dose computed tomography (LDCT) has played an important role in the diagnosis CT to reduce the potential adverse effects of X-ray radiation on patients, while maintaining the same diagnostic image quality.

PURPOSE

Deep learning (DL)-based methods have played an increasingly important role in the field of LDCT imaging. However, its performance is highly dependent on the consistency of feature distributions between training data and test data. Due to patient's breathing movements during data acquisition, the paired LDCT and normal dose CT images are difficult to obtain from realistic imaging scenarios. Moreover, LDCT images from simulation or clinical CT examination often have different feature distributions due to the pollution by different amounts and types of image noises. If a network model trained with a simulated dataset is used to directly test clinical patients' LDCT data, its denoising performance may be degraded. Based on this, we propose a novel domain-adaptive denoising network (DADN) via noise estimation and transfer learning to resolve the out-of-distribution problem in LDCT imaging.

METHODS

To overcome the previous adaptation issue, a novel network model consisting of a reconstruction network and a noise estimation network was designed. The noise estimation network based on a double branch structure is used for image noise extraction and adaptation. Meanwhile, the U-Net-based reconstruction network uses several spatially adaptive normalization modules to fuse multi-scale noise input. Moreover, to facilitate the adaptation of the proposed DADN network to new imaging scenarios, we set a two-stage network training plan. In the first stage, the public simulated dataset is used for training. In the second transfer training stage, we will continue to fine-tune the network model with a torso phantom dataset, while some parameters are frozen. The main reason using the two-stage training scheme is based on the fact that the feature distribution of image content from the public dataset is complex and diverse, whereas the feature distribution of noise pattern from the torso phantom dataset is closer to realistic imaging scenarios.

RESULTS

In an evaluation study, the trained DADN model is applied to both the public and clinical patient LDCT datasets. Through the comparison of visual inspection and quantitative results, it is shown that the proposed DADN network model can perform well in terms of noise and artifact suppression, while effectively preserving image contrast and details.

CONCLUSIONS

In this paper, we have proposed a new DL network to overcome the domain adaptation problem in LDCT image denoising. Moreover, the results demonstrate the feasibility and effectiveness of the application of our proposed DADN network model as a new DL-based LDCT image denoising method.

摘要

背景

近年来,低剂量计算机断层扫描(LDCT)在 CT 诊断中发挥了重要作用,可降低 X 射线辐射对患者的潜在不良影响,同时保持相同的诊断图像质量。

目的

基于深度学习(DL)的方法在 LDCT 成像领域发挥了越来越重要的作用。然而,其性能高度依赖于训练数据和测试数据之间特征分布的一致性。由于数据采集过程中患者的呼吸运动,从现实成像场景中很难获得配对的 LDCT 和常规剂量 CT 图像。此外,由于不同数量和类型的图像噪声的污染,来自模拟或临床 CT 检查的 LDCT 图像的特征分布往往不同。如果使用基于模拟数据集训练的网络模型直接测试临床患者的 LDCT 数据,其去噪性能可能会下降。基于此,我们提出了一种新的基于噪声估计和迁移学习的域自适应去噪网络(DADN),以解决 LDCT 成像中的分布外问题。

方法

为了克服以前的适应问题,设计了一种由重建网络和噪声估计网络组成的新型网络模型。基于双分支结构的噪声估计网络用于图像噪声提取和适应。同时,基于 U-Net 的重建网络使用几个空间自适应归一化模块融合多尺度噪声输入。此外,为了便于将提出的 DADN 网络适应新的成像场景,我们设置了两阶段网络训练计划。在第一阶段,使用公共模拟数据集进行训练。在第二阶段的迁移训练阶段,我们将继续使用体模数据集对网络模型进行微调,同时冻结一些参数。使用两阶段训练方案的主要原因是基于公共数据集的图像内容特征分布复杂多样,而体模数据集的噪声模式特征分布更接近实际成像场景。

结果

在评估研究中,将训练好的 DADN 模型应用于公共和临床患者的 LDCT 数据集。通过视觉检查和定量结果的比较,结果表明,所提出的 DADN 网络模型在噪声和伪影抑制方面表现良好,同时有效保留了图像对比度和细节。

结论

本文提出了一种新的 DL 网络来克服 LDCT 图像去噪中的域适应问题。此外,结果表明,我们提出的 DADN 网络模型作为一种新的基于 DL 的 LDCT 图像去噪方法具有可行性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验