Suppr超能文献

用于电容层析成像图像重建的对抗分辨率增强

Adversarial Resolution Enhancement for Electrical Capacitance Tomography Image Reconstruction.

作者信息

Deabes Wael, Abdel-Hakim Alaa E, Bouazza Kheir Eddine, Althobaiti Hassan

机构信息

Department of Computer Science in Jamoum, Umm Al-Qura University, Makkah 25371, Saudi Arabia.

Computers and Systems Engineering Department, Mansoura University, Mansoura 35516, Egypt.

出版信息

Sensors (Basel). 2022 Apr 20;22(9):3142. doi: 10.3390/s22093142.

Abstract

High-quality image reconstruction is essential for many electrical capacitance tomography (CT) applications. Raw capacitance measurements are used in the literature to generate low-resolution images. However, such low-resolution images are not sufficient for proper functionality of most systems. In this paper, we propose a novel adversarial resolution enhancement (ARE-ECT) model to reconstruct high-resolution images of inner distributions based on low-quality initial images, which are generated from the capacitance measurements. The proposed model uses a UNet as the generator of a conditional generative adversarial network (CGAN). The generator's input is set to the low-resolution image rather than the typical random input signal. Additionally, the CGAN is conditioned by the input low-resolution image itself. For evaluation purposes, a massive ECT dataset of 320 K synthetic image-measurement pairs was created. This dataset is used for training, validating, and testing the proposed model. New flow patterns, which are not exposed to the model during the training phase, are used to evaluate the feasibility and generalization ability of the ARE-ECT model. The superiority of ARE-ECT, in the efficient generation of more accurate ECT images than traditional and other deep learning-based image reconstruction algorithms, is proved by the evaluation results. The ARE-ECT model achieved an average image correlation coefficient of more than 98.8% and an average relative image error about 0.1%.

摘要

高质量的图像重建对于许多电容层析成像(ECT)应用至关重要。文献中使用原始电容测量值来生成低分辨率图像。然而,这种低分辨率图像对于大多数系统的正常运行来说是不够的。在本文中,我们提出了一种新颖的对抗分辨率增强(ARE-ECT)模型,用于基于从电容测量值生成的低质量初始图像来重建内部分布的高分辨率图像。所提出的模型使用U-Net作为条件生成对抗网络(CGAN)的生成器。生成器的输入设置为低分辨率图像,而不是典型的随机输入信号。此外,CGAN以输入的低分辨率图像本身为条件。为了进行评估,创建了一个包含32万个合成图像-测量对的大规模ECT数据集。该数据集用于训练、验证和测试所提出的模型。在训练阶段未向模型展示的新流动模式用于评估ARE-ECT模型的可行性和泛化能力。评估结果证明了ARE-ECT在有效生成比传统算法和其他基于深度学习的图像重建算法更准确的ECT图像方面的优越性。ARE-ECT模型实现了超过98.8%的平均图像相关系数和约0.1%的平均相对图像误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3344/9105104/ef6bbf7c7227/sensors-22-03142-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验