Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
Science. 2018 Nov 2;362(6414):572-576. doi: 10.1126/science.aau3873.
Many ultrafast solid phase transitions are treated as chemical reactions that transform the structures between two different unit cells along a reaction coordinate, but this neglects the role of disorder. Although ultrafast diffraction provides insights into atomic dynamics during such transformations, diffraction alone probes an averaged unit cell and is less sensitive to randomness in the transition pathway. Using total scattering of femtosecond x-ray pulses, we show that atomic disordering in photoexcited vanadium dioxide (VO) is central to the transition mechanism and that, after photoexcitation, the system explores a large volume of phase space on a time scale comparable to that of a single phonon oscillation. These results overturn the current understanding of an archetypal ultrafast phase transition and provide new microscopic insights into rapid evolution toward equilibrium in photoexcited matter.
许多超快固相转变被视为化学反应,沿反应坐标将两种不同的单胞结构转变,但是这种处理方法忽略了无序的作用。虽然超快衍射为这种转变过程中的原子动力学提供了一些见解,但衍射仅探测平均单胞,对转变途径中的随机性的敏感度较低。我们使用飞秒 X 射线脉冲的全散射,表明在光激发的二氧化钒(VO)中原子无序是转变机制的核心,并且在光激发之后,系统在与单个声子振荡相当的时间尺度上探索了大量的相空间。这些结果颠覆了对典型超快相变的现有理解,并为光激发物质中快速向平衡演变的微观机制提供了新的见解。