Wegkamp Daniel, Herzog Marc, Xian Lede, Gatti Matteo, Cudazzo Pierluigi, McGahan Christina L, Marvel Robert E, Haglund Richard F, Rubio Angel, Wolf Martin, Stähler Julia
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Physikalische Chemie, Faradayweg 4-6, 14195 Berlin, Germany.
Nano-Bio Spectroscopy group, Universidad del País Vasco CFM CSIC-UPV/EHU-MPC & DIPC, 20018 San Sebastián, Spain and European Theoretical Spectroscopy Facility (ETSF).
Phys Rev Lett. 2014 Nov 21;113(21):216401. doi: 10.1103/PhysRevLett.113.216401. Epub 2014 Nov 17.
Using femtosecond time-resolved photoelectron spectroscopy we demonstrate that photoexcitation transforms monoclinic VO2 quasi-instantaneously into a metal. Thereby, we exclude an 80 fs structural bottleneck for the photoinduced electronic phase transition of VO2. First-principles many-body perturbation theory calculations reveal a high sensitivity of the VO2 band gap to variations of the dynamically screened Coulomb interaction, supporting a fully electronically driven isostructural insulator-to-metal transition. We thus conclude that the ultrafast band structure renormalization is caused by photoexcitation of carriers from localized V 3d valence states, strongly changing the screening before significant hot-carrier relaxation or ionic motion has occurred.
利用飞秒时间分辨光电子能谱,我们证明了光激发能将单斜相VO₂几乎瞬间转变为金属。由此,我们排除了VO₂光致电子相变存在80飞秒的结构瓶颈。第一性原理多体微扰理论计算表明,VO₂带隙对动态屏蔽库仑相互作用的变化具有高度敏感性,支持了完全由电子驱动的等结构绝缘体-金属转变。因此,我们得出结论,超快能带结构重整化是由局域V 3d价态的载流子光激发引起的,在显著的热载流子弛豫或离子运动发生之前,强烈改变了屏蔽效应。