Department of Chemistry, University of California, Berkeley, CA 94720.
Department of Physics, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9558-9563. doi: 10.1073/pnas.1707602114. Epub 2017 Aug 21.
Coulomb correlations can manifest in exotic properties in solids, but how these properties can be accessed and ultimately manipulated in real time is not well understood. The insulator-to-metal phase transition in vanadium dioxide (VO) is a canonical example of such correlations. Here, few-femtosecond extreme UV transient absorption spectroscopy (FXTAS) at the vanadium edge is used to track the insulator-to-metal phase transition in VO This technique allows observation of the bulk material in real time, follows the photoexcitation process in both the insulating and metallic phases, probes the subsequent relaxation in the metallic phase, and measures the phase-transition dynamics in the insulating phase. An understanding of the VO absorption spectrum in the extreme UV is developed using atomic cluster model calculations, revealing V/d character of the vanadium center. We find that the insulator-to-metal phase transition occurs on a timescale of 26 ± 6 fs and leaves the system in a long-lived excited state of the metallic phase, driven by a change in orbital occupation. Potential interpretations based on electronic screening effects and lattice dynamics are discussed. A Mott-Hubbard-type mechanism is favored, as the observed timescales and d nature of the vanadium metal centers are inconsistent with a Peierls driving force. The findings provide a combined experimental and theoretical roadmap for using time-resolved extreme UV spectroscopy to investigate nonequilibrium dynamics in strongly correlated materials.
库仑相关可以在固体中表现出奇异的性质,但人们对如何在实时中访问和最终操纵这些性质还了解甚少。二氧化钒(VO)中的绝缘-金属相变就是这种相关性的一个典型例子。在这里,使用钒边缘的飞秒极紫外瞬态吸收光谱(FXTAS)来跟踪 VO 中的绝缘-金属相变。这项技术可以实时观察块状材料,跟踪绝缘相和金属相中的光激发过程,探测金属相中的后续弛豫,并测量绝缘相中的相变动力学。通过原子团簇模型计算,对 VO 在极紫外区的吸收光谱进行了研究,揭示了钒中心的 V/d 特性。我们发现,绝缘-金属相变发生在 26±6fs 的时间尺度内,并使系统处于金属相的长寿命激发态,这是由轨道占据的变化驱动的。讨论了基于电子屏蔽效应和晶格动力学的潜在解释。由于观察到的时间尺度和钒金属中心的 d 性质与派尔斯驱动力不一致,因此倾向于莫特-哈伯德机制。这些发现为使用时间分辨的极紫外光谱研究强关联材料中的非平衡动力学提供了综合的实验和理论路线图。