Suppr超能文献

用飞秒极紫外瞬态吸收光谱法追踪 VO 中的绝缘相到金属相的转变。

Tracking the insulator-to-metal phase transition in VO with few-femtosecond extreme UV transient absorption spectroscopy.

机构信息

Department of Chemistry, University of California, Berkeley, CA 94720.

Department of Physics, University of California, Berkeley, CA 94720.

出版信息

Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9558-9563. doi: 10.1073/pnas.1707602114. Epub 2017 Aug 21.

Abstract

Coulomb correlations can manifest in exotic properties in solids, but how these properties can be accessed and ultimately manipulated in real time is not well understood. The insulator-to-metal phase transition in vanadium dioxide (VO) is a canonical example of such correlations. Here, few-femtosecond extreme UV transient absorption spectroscopy (FXTAS) at the vanadium edge is used to track the insulator-to-metal phase transition in VO This technique allows observation of the bulk material in real time, follows the photoexcitation process in both the insulating and metallic phases, probes the subsequent relaxation in the metallic phase, and measures the phase-transition dynamics in the insulating phase. An understanding of the VO absorption spectrum in the extreme UV is developed using atomic cluster model calculations, revealing V/d character of the vanadium center. We find that the insulator-to-metal phase transition occurs on a timescale of 26 ± 6 fs and leaves the system in a long-lived excited state of the metallic phase, driven by a change in orbital occupation. Potential interpretations based on electronic screening effects and lattice dynamics are discussed. A Mott-Hubbard-type mechanism is favored, as the observed timescales and d nature of the vanadium metal centers are inconsistent with a Peierls driving force. The findings provide a combined experimental and theoretical roadmap for using time-resolved extreme UV spectroscopy to investigate nonequilibrium dynamics in strongly correlated materials.

摘要

库仑相关可以在固体中表现出奇异的性质,但人们对如何在实时中访问和最终操纵这些性质还了解甚少。二氧化钒(VO)中的绝缘-金属相变就是这种相关性的一个典型例子。在这里,使用钒边缘的飞秒极紫外瞬态吸收光谱(FXTAS)来跟踪 VO 中的绝缘-金属相变。这项技术可以实时观察块状材料,跟踪绝缘相和金属相中的光激发过程,探测金属相中的后续弛豫,并测量绝缘相中的相变动力学。通过原子团簇模型计算,对 VO 在极紫外区的吸收光谱进行了研究,揭示了钒中心的 V/d 特性。我们发现,绝缘-金属相变发生在 26±6fs 的时间尺度内,并使系统处于金属相的长寿命激发态,这是由轨道占据的变化驱动的。讨论了基于电子屏蔽效应和晶格动力学的潜在解释。由于观察到的时间尺度和钒金属中心的 d 性质与派尔斯驱动力不一致,因此倾向于莫特-哈伯德机制。这些发现为使用时间分辨的极紫外光谱研究强关联材料中的非平衡动力学提供了综合的实验和理论路线图。

相似文献

4
Metallization of vanadium dioxide driven by large phonon entropy.由声子熵驱动的二氧化钒的金属化。
Nature. 2014 Nov 27;515(7528):535-9. doi: 10.1038/nature13865. Epub 2014 Nov 10.
7
Ultrafast Mid-Infrared Nanoscopy of Strained Vanadium Dioxide Nanobeams.应变二氧化钒纳梁的超快中红外纳米成像。
Nano Lett. 2016 Feb 10;16(2):1421-7. doi: 10.1021/acs.nanolett.5b04988. Epub 2016 Jan 21.
8
Isostructural metal-insulator transition in VO.VO 中的同结构金属-绝缘体转变。
Science. 2018 Nov 30;362(6418):1037-1040. doi: 10.1126/science.aam9189.
10
Orbital-assisted metal-insulator transition in VO2.二氧化钒中的轨道辅助金属-绝缘体转变
Phys Rev Lett. 2005 Nov 4;95(19):196404. doi: 10.1103/PhysRevLett.95.196404. Epub 2005 Nov 2.

引用本文的文献

4
Near-Field Nanoimaging of Phases and Carrier Dynamics in Vanadium Dioxide Nanobeams.二氧化钒纳米梁中相和载流子动力学的近场纳米成像
ACS Photonics. 2024 Jul 17;11(8):3359-3364. doi: 10.1021/acsphotonics.4c00848. eCollection 2024 Aug 21.
8
High-Strain-Induced Local Modification of the Electronic Properties of VO Thin Films.高应变诱导的VO薄膜电子性质的局部改性
ACS Appl Electron Mater. 2022 Dec 27;4(12):6020-6028. doi: 10.1021/acsaelm.2c01176. Epub 2022 Nov 18.

本文引用的文献

2
Slowdown of the Electronic Relaxation Close to the Mott Transition.接近莫特转变时电子弛豫的减慢
Phys Rev Lett. 2016 Aug 26;117(9):096403. doi: 10.1103/PhysRevLett.117.096403. Epub 2016 Aug 24.
8
Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy.利用阿秒时间分辨光谱对电子动力学进行实时探测。
Annu Rev Phys Chem. 2016 May 27;67:41-63. doi: 10.1146/annurev-physchem-040215-112025. Epub 2016 Feb 24.
10
Linking high harmonics from gases and solids.连接气体和固体的高次谐波。
Nature. 2015 Jun 25;522(7557):462-4. doi: 10.1038/nature14517.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验