Suppr超能文献

重新审视格吕利希和派尔方法:一种使用小儿创伤手部X光片进行小儿骨龄评估的深度学习方法。

Rethinking Greulich and Pyle: A Deep Learning Approach to Pediatric Bone Age Assessment Using Pediatric Trauma Hand Radiographs.

作者信息

Pan Ian, Baird Grayson L, Mutasa Simukayi, Merck Derek, Ruzal-Shapiro Carrie, Swenson David W, Ayyala Rama S

机构信息

Department of Diagnostic Imaging, Rhode Island Hospital/Hasbro Children's Hospital, The Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02903 (I.P., D.W.S., R.S.A.); Department of Diagnostic Imaging and Lifespan Biostatistics Core, Rhode Island Hospital, Providence, RI (G.L.B.); Department of Radiology, Columbia University Medical Center, New York, NY (S.M., C.R.); and Department of Emergency Medicine, University of Florida Shands Hospital, Gainesville, Fla (D.M.).

出版信息

Radiol Artif Intell. 2020 Jul 29;2(4):e190198. doi: 10.1148/ryai.2020190198. eCollection 2020 Jul.

Abstract

PURPOSE

To develop a deep learning approach to bone age assessment based on a training set of developmentally normal pediatric hand radiographs and to compare this approach with automated and manual bone age assessment methods based on Greulich and Pyle (GP).

METHODS

In this retrospective study, a convolutional neural network (trauma hand radiograph-trained deep learning bone age assessment method [TDL-BAAM]) was trained on 15 129 frontal view pediatric trauma hand radiographs obtained between December 14, 2009, and May 31, 2017, from Children's Hospital of New York, to predict chronological age. A total of 214 trauma hand radiographs from Hasbro Children's Hospital were used as an independent test set. The test set was rated by the TDL-BAAM model as well as a GP-based deep learning model (GPDL-BAAM) and two pediatric radiologists (radiologists 1 and 2) using the GP method. All ratings were compared with chronological age using mean absolute error (MAE), and standard concordance analyses were performed.

RESULTS

The MAE of the TDL-BAAM model was 11.1 months, compared with 12.9 months for GPDL-BAAM ( = .0005), 14.6 months for radiologist 1 ( < .0001), and 16.0 for radiologist 2 ( < .0001). For TDL-BAAM, 95.3% of predictions were within 24 months of chronological age compared with 91.6% for GPDL-BAAM ( = .096), 86.0% for radiologist 1 ( < .0001), and 84.6% for radiologist 2 ( < .0001). Concordance was high between all methods and chronological age (intraclass coefficient > 0.93). Deep learning models demonstrated a systematic bias with a tendency to overpredict age for younger children versus radiologists who showed a consistent mean bias.

CONCLUSION

A deep learning model trained on pediatric trauma hand radiographs is on par with automated and manual GP-based methods for bone age assessment and provides a foundation for developing population-specific deep learning algorithms for bone age assessment in modern pediatric populations.© RSNA, 2020See also the commentary by Halabi in this issue.

摘要

目的

基于发育正常的儿科手部X线片训练集,开发一种深度学习方法用于骨龄评估,并将该方法与基于格雷利希和派尔(GP)法的自动及手动骨龄评估方法进行比较。

方法

在这项回顾性研究中,使用2009年12月14日至2017年5月31日期间从纽约儿童医院获取的15129张儿童创伤手部正位X线片,训练一个卷积神经网络(创伤手部X线片训练的深度学习骨龄评估方法[TDL - BAAM])来预测实际年龄。将来自哈斯波罗儿童医院的214张创伤手部X线片用作独立测试集。测试集由TDL - BAAM模型、基于GP的深度学习模型(GPDL - BAAM)以及两名儿科放射科医生(放射科医生1和2)使用GP方法进行评分。所有评分均使用平均绝对误差(MAE)与实际年龄进行比较,并进行标准一致性分析。

结果

TDL - BAAM模型的MAE为11.1个月,GPDL - BAAM为12.9个月(P = 0.0005),放射科医生1为14.6个月(P < 0.0001),放射科医生2为16.0个月(P < 0.0001)。对于TDL - BAAM,95.3%的预测值在实际年龄的24个月范围内,而GPDL - BAAM为91.6%(P = 0.096),放射科医生1为86.0%(P < 0.0001),放射科医生2为84.6%(P < 0.0001)。所有方法与实际年龄之间的一致性都很高(组内相关系数>0.93)。深度学习模型表现出一种系统偏差,即相较于表现出一致平均偏差的放射科医生,倾向于对年幼儿童的年龄预测过高。

结论

基于儿科创伤手部X线片训练的深度学习模型在骨龄评估方面与基于GP的自动和手动方法相当,并为开发针对现代儿科人群骨龄评估的特定人群深度学习算法奠定了基础。©RSNA,2020另见本期哈拉比的评论。

相似文献

8
High performance for bone age estimation with an artificial intelligence solution.人工智能解决方案在骨龄评估中的高性能表现。
Diagn Interv Imaging. 2023 Jul-Aug;104(7-8):330-336. doi: 10.1016/j.diii.2023.04.003. Epub 2023 Apr 22.

引用本文的文献

本文引用的文献

3
The RSNA Pediatric Bone Age Machine Learning Challenge.RSNA 儿科骨龄机器学习挑战赛。
Radiology. 2019 Feb;290(2):498-503. doi: 10.1148/radiol.2018180736. Epub 2018 Nov 27.
6
Focal Loss for Dense Object Detection.用于密集目标检测的焦散损失
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):318-327. doi: 10.1109/TPAMI.2018.2858826. Epub 2018 Jul 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验