Biomedical Imaging, Vision, and Learning Laboratory (BIVL2ab), Universidad Industrial de Santander, Bucaramanga, Colombia.
Biomedica. 2024 May 31;44(Sp. 1):89-100. doi: 10.7705/biomedica.7115.
Cine-MRI (cine-magnetic resonance imaging) sequences are a key diagnostic tool to visualize anatomical information, allowing experts to localize and determine suspicious pathologies. Nonetheless, such analysis remains subjective and prone to diagnosis errors.
To develop a binary and multi-class classification considering various cardiac conditions using a spatiotemporal model that highlights kinematic movements to characterize each disease.
This research focuses on a 3D convolutional representation to characterize cardiac kinematic patterns during the cardiac cycle, which may be associated with pathologies. The kinematic maps are obtained from the apparent velocity maps computed from a dense optical flow strategy. Then, a 3D convolutional scheme learns to differentiate pathologies from kinematic maps.
The proposed strategy was validated with respect to the capability to discriminate among myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy, abnormal right ventricle, and normal cardiac sequences. The proposed method achieves an average accuracy of 78.00% and a F1 score of 75.55%. Likewise, the approach achieved 92.31% accuracy for binary classification between pathologies and control cases.
The proposed method can support the identification of kinematically abnormal patterns associated with a pathological condition. The resultant descriptor, learned from the 3D convolutional net, preserves detailed spatiotemporal correlations and could emerge as possible digital biomarkers of cardiac diseases.
电影磁共振成像(cine-magnetic resonance imaging)序列是一种可视化解剖信息的关键诊断工具,使专家能够定位和确定可疑的病变。然而,这种分析仍然是主观的,容易出现诊断错误。
使用强调运动学运动的时空模型,开发一种用于分类各种心脏状况的二进制和多类分类,以对每种疾病进行特征描述。
本研究专注于使用 3D 卷积表示来描述心脏运动学模式,这些模式可能与疾病有关。运动学图谱是从密集光流策略计算得出的表观速度图谱中获得的。然后,3D 卷积方案可以学习区分不同疾病的运动学图谱。
所提出的策略在区分心肌梗死、扩张型心肌病、肥厚型心肌病、右心室异常和正常心脏序列方面表现出较强的区分能力。该方法的平均准确率为 78.00%,F1 评分为 75.55%。同样,该方法在区分病变和对照组的二分类中达到了 92.31%的准确率。
所提出的方法可以支持识别与病理状况相关的运动学异常模式。从 3D 卷积网络中学习到的描述符保留了详细的时空相关性,并且可能成为心脏疾病的潜在数字生物标志物。