Suppr超能文献

基于深度学习的心脏电影磁共振图像左心室自动分割与定量方法。

A deep learning-based approach for automatic segmentation and quantification of the left ventricle from cardiac cine MR images.

机构信息

Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA.

College of Technological Innovation, Zayed University, Dubai, United Arab Emirates.

出版信息

Comput Med Imaging Graph. 2020 Apr;81:101717. doi: 10.1016/j.compmedimag.2020.101717. Epub 2020 Mar 12.

Abstract

Cardiac MRI has been widely used for noninvasive assessment of cardiac anatomy and function as well as heart diagnosis. The estimation of physiological heart parameters for heart diagnosis essentially require accurate segmentation of the Left ventricle (LV) from cardiac MRI. Therefore, we propose a novel deep learning approach for the automated segmentation and quantification of the LV from cardiac cine MR images. We aim to achieve lower errors for the estimated heart parameters compared to the previous studies by proposing a novel deep learning segmentation method. Our framework starts by an accurate localization of the LV blood pool center-point using a fully convolutional neural network (FCN) architecture called FCN1. Then, a region of interest (ROI) that contains the LV is extracted from all heart sections. The extracted ROIs are used for the segmentation of LV cavity and myocardium via a novel FCN architecture called FCN2. The FCN2 network has several bottleneck layers and uses less memory footprint than conventional architectures such as U-net. Furthermore, a new loss function called radial loss that minimizes the distance between the predicted and true contours of the LV is introduced into our model. Following myocardial segmentation, functional and mass parameters of the LV are estimated. Automated Cardiac Diagnosis Challenge (ACDC-2017) dataset was used to validate our framework, which gave better segmentation, accurate estimation of cardiac parameters, and produced less error compared to other methods applied on the same dataset. Furthermore, we showed that our segmentation approach generalizes well across different datasets by testing its performance on a locally acquired dataset. To sum up, we propose a deep learning approach that can be translated into a clinical tool for heart diagnosis.

摘要

心脏 MRI 广泛用于心脏解剖和功能的无创评估以及心脏诊断。心脏诊断的生理心脏参数估计本质上需要从心脏 MRI 中准确分割左心室 (LV)。因此,我们提出了一种新的深度学习方法,用于从心脏电影磁共振图像自动分割和量化 LV。我们旨在通过提出一种新的深度学习分割方法,与之前的研究相比,降低估计的心脏参数的误差。

我们的框架首先使用称为 FCN1 的全卷积神经网络 (FCN) 架构准确定位 LV 血池中心点。然后,从所有心脏切片中提取包含 LV 的感兴趣区域 (ROI)。提取的 ROI 用于通过称为 FCN2 的新 FCN 架构分割 LV 腔和心肌。FCN2 网络具有几个瓶颈层,比 U-net 等传统架构使用更少的内存。此外,引入了一种新的称为径向损失的损失函数,该函数最小化 LV 的预测和真实轮廓之间的距离。

在心肌分割之后,估计 LV 的功能和质量参数。我们使用自动心脏诊断挑战 (ACDC-2017) 数据集验证了我们的框架,与应用于同一数据集的其他方法相比,该框架的分割效果更好,心脏参数的估计更准确,误差更小。此外,我们通过在本地获取的数据集上测试其性能,表明我们的分割方法可以很好地推广到不同的数据集。

总之,我们提出了一种深度学习方法,可以转化为心脏诊断的临床工具。

相似文献

8
Automatic cardiac cine MRI segmentation and heart disease classification.自动心脏电影磁共振成像分割与心脏病分类。
Comput Med Imaging Graph. 2021 Mar;88:101864. doi: 10.1016/j.compmedimag.2021.101864. Epub 2021 Jan 13.

引用本文的文献

8
An Overview of Deep Learning Methods for Left Ventricle Segmentation.深度学习方法在左心室分割中的应用综述。
Comput Intell Neurosci. 2023 Jan 30;2023:4208231. doi: 10.1155/2023/4208231. eCollection 2023.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验