Suppr超能文献

核密度分析揭示了康涅狄格州乳腺癌发病率的晕轮模式。

Kernel density analysis reveals a halo pattern of breast cancer incidence in Connecticut.

作者信息

Rybnikova Natalya, Stevens Richard G, Gregorio David I, Samociuk Holly, Portnov Boris A

机构信息

Department of Natural Resources and Environment Management, Faculty of Management, University of Haifa, Haifa, Israel.

Department of Community Medicine, School of Medicine, University of Connecticut, Farmington, CT 06030, United States.

出版信息

Spat Spatiotemporal Epidemiol. 2018 Aug;26:143-151. doi: 10.1016/j.sste.2018.06.003. Epub 2018 Jun 19.

Abstract

Breast cancer (BC) incidence rates in Connecticut are among the highest in the United States, and are unevenly distributed within the state. Our goal was to determine whether artificial light at night (ALAN) played a role. Using BC records obtained from the Connecticut Tumor Registry, we applied the double kernel density (DKD) estimator to produce a continuous relative risk surface of a disease throughout the State. A multi-variate analysis compared DKD and census track estimates with population density, fertility rate, percent of non-white population, population below poverty level, and ALAN levels. The analysis identified a "halo" geographic pattern of BC incidence, with the highest rates of the disease observed at distances 5-15 km from the state's major cities. The "halo" was of high-income communities, with high ALAN, located in suburban fringes of the state's main cities.

摘要

康涅狄格州的乳腺癌发病率在美国位居前列,且在该州内分布不均。我们的目标是确定夜间人造光(ALAN)是否起到了作用。利用从康涅狄格肿瘤登记处获得的乳腺癌记录,我们应用双核密度(DKD)估计器来生成该州疾病的连续相对风险表面。多变量分析将DKD和人口普查轨迹估计值与人口密度、生育率、非白人人口百分比、贫困线以下人口以及ALAN水平进行了比较。分析确定了乳腺癌发病率的“光环”地理模式,在距离该州主要城市5至15公里处观察到该病的最高发病率。“光环”区域是高收入社区,具有高ALAN水平,位于该州主要城市的郊区边缘。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验