Suppr超能文献

基于社交媒体数据的城市要素与新冠病毒传播的相关性分析。

Correlation Analysis between Urban Elements and COVID-19 Transmission Using Social Media Data.

机构信息

Department of Urban Planning, School of Urban Design, Wuhan University, Wuhan 430072, China.

Center for Geographic Analysis, Harvard University, Cambridge, MA 02138, USA.

出版信息

Int J Environ Res Public Health. 2022 Apr 25;19(9):5208. doi: 10.3390/ijerph19095208.

Abstract

The outbreak of the COVID-19 has become a worldwide public health challenge for contemporary cities during the background of globalization and planetary urbanization. However, spatial factors affecting the transmission of the disease in urban spaces remain unclear. Based on geotagged COVID-19 cases from social media data in the early stage of the pandemic, this study explored the correlation between different infectious outcomes of COVID-19 transmission and various factors of the urban environment in the main urban area of Wuhan, utilizing the multiple regression model. The result shows that most spatial factors were strongly correlated to case aggregation areas of COVID-19 in terms of population density, human mobility and environmental quality, which provides urban planners and administrators valuable insights for building healthy and safe cities in an uncertain future.

摘要

在全球化和行星城市化的背景下,COVID-19 的爆发已成为当代城市面临的全球性公共卫生挑战。然而,城市空间中影响疾病传播的空间因素仍不清楚。本研究基于大流行早期社交媒体数据中的地理标记 COVID-19 病例,利用多元回归模型探讨了武汉市主城区 COVID-19 传播不同感染结果与城市环境各因素之间的相关性。结果表明,人口密度、人类流动性和环境质量等大多数空间因素与 COVID-19 的病例聚集区高度相关,这为城市规划者和管理者在不确定的未来建设健康安全的城市提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a8/9101567/aa28d4340b94/ijerph-19-05208-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验