Suppr超能文献

肌醇磷酸激酶:拓展蛋白激酶折叠通用核心的生物学意义

Inositol phosphate kinases: Expanding the biological significance of the universal core of the protein kinase fold.

作者信息

Shears Stephen B, Wang Huanchen

机构信息

Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.

出版信息

Adv Biol Regul. 2019 Jan;71:118-127. doi: 10.1016/j.jbior.2018.10.006. Epub 2018 Oct 27.

Abstract

The protein kinase family is characterized by substantial conservation of architectural elements that are required for both ATP binding and phosphotransferase activity. Many of these structural features have also been identified in homologous enzymes that phosphorylate a variety of alternative, non-protein substrates. A comparative structural analysis of these different kinase sub-classes is a portal to a greater understanding of reaction mechanisms, enzyme regulation, inhibitor-development strategies, and superfamily-level evolutionary relationships. To serve such advances, we review structural elements of the protein kinase fold that are conserved in the subfamily of inositol phosphate kinases (InsPKs) that share a PxxxDxKxG catalytic signature: inositol 1,4,5-trisphosphate kinase (IP3K), inositol hexakisphosphate kinase (IP6K), and inositol polyphosphate multikinase (IPMK). We describe conservation of the fundamental two-lobe kinase architecture: an N-lobe constructed upon an anti-parallel β-strand scaffold, which is coupled to a largely helical C-lobe by a single, adenine-binding hinge. This equivalency also includes a G-loop that embraces the β/γ-phosphates of ATP, a transition-state stabilizing residue (Lys/His), and a Mg-positioning aspartate residue within a catalytic triad. Furthermore, we expand this list of conserved structural features to include some not previously identified in InsPKs: a 'gatekeeper' residue in the N-lobe, and an 'αF'-like helix in the C-lobe that anchors two structurally-stabilizing, hydrophobic spines, formed from non-consecutive residues that span the two lobes. We describe how this wide-ranging structural homology can be exploited to develop lead inhibitors of IP6K and IPMK, by using strategies similar to those that have generated ATP-competing inhibitors of protein-kinases. We provide several examples to illustrate how such an approach could benefit human health.

摘要

蛋白激酶家族的特点是其结构元件高度保守,这些元件对于ATP结合和磷酸转移酶活性都是必需的。在磷酸化各种替代的非蛋白质底物的同源酶中也发现了许多这些结构特征。对这些不同激酶亚类进行比较结构分析,是深入了解反应机制、酶调节、抑制剂开发策略以及超家族水平进化关系的一个途径。为了推动这些进展,我们综述了在肌醇磷酸激酶(InsPKs)亚家族中保守的蛋白激酶折叠结构元件,这些亚家族具有PxxxDxKxG催化特征:肌醇1,4,5-三磷酸激酶(IP3K)、肌醇六磷酸激酶(IP6K)和肌醇多磷酸多激酶(IPMK)。我们描述了基本的双叶激酶结构的保守性:一个基于反平行β链支架构建的N叶,它通过一个单一的腺嘌呤结合铰链与一个主要为螺旋结构的C叶相连。这种等效性还包括一个环绕ATP的β/γ磷酸基团的G环、一个稳定过渡态的残基(赖氨酸/组氨酸)以及催化三联体中的一个定位镁离子的天冬氨酸残基。此外,我们将这些保守结构特征的列表扩展到包括一些以前在InsPKs中未发现的特征:N叶中的一个“守门”残基,以及C叶中的一个类似“αF”的螺旋,该螺旋锚定了两个由跨越两个叶的非连续残基形成的结构稳定的疏水棘。我们描述了如何利用这种广泛的结构同源性,通过类似于产生蛋白激酶ATP竞争性抑制剂的策略,来开发IP6K和IPMK的先导抑制剂。我们提供了几个例子来说明这种方法如何有益于人类健康。

相似文献

1
Inositol phosphate kinases: Expanding the biological significance of the universal core of the protein kinase fold.
Adv Biol Regul. 2019 Jan;71:118-127. doi: 10.1016/j.jbior.2018.10.006. Epub 2018 Oct 27.
3
Inhibition of Inositol Polyphosphate Kinases by Quercetin and Related Flavonoids: A Structure-Activity Analysis.
J Med Chem. 2019 Feb 14;62(3):1443-1454. doi: 10.1021/acs.jmedchem.8b01593. Epub 2019 Jan 25.
6
The Expanding Significance of Inositol Polyphosphate Multikinase as a Signaling Hub.
Mol Cells. 2017 May 31;40(5):315-321. doi: 10.14348/molcells.2017.0066. Epub 2017 May 29.
8
Use of Protein Kinase-Focused Compound Libraries for the Discovery of New Inositol Phosphate Kinase Inhibitors.
SLAS Discov. 2018 Oct;23(9):982-988. doi: 10.1177/2472555218775323. Epub 2018 May 29.

引用本文的文献

1
Inositol Phosphate Kinase Architecture: Practical Approaches and Lessons Learned.
Methods Mol Biol. 2025;2972:171-187. doi: 10.1007/978-1-0716-4799-8_13.
3
4
Biochemical and structural characterization of an inositol pyrophosphate kinase from a giant virus.
EMBO J. 2024 Feb;43(3):462-480. doi: 10.1038/s44318-023-00005-0. Epub 2024 Jan 12.
5
The Role of Inositol Hexakisphosphate Kinase in the Central Nervous System.
Biomolecules. 2023 Aug 28;13(9):1317. doi: 10.3390/biom13091317.
6
Synthesis and biological evaluation of flavonoid-based IP6K2 inhibitors.
J Enzyme Inhib Med Chem. 2023 Dec;38(1):2193866. doi: 10.1080/14756366.2023.2193866.
7
Functional molecular evolution of a GTP sensing kinase: PI5P4Kβ.
FEBS J. 2023 Sep;290(18):4419-4428. doi: 10.1111/febs.16763. Epub 2023 Mar 10.
9
Structural and catalytic analyses of the InsP kinase activities of higher plant ITPKs.
FASEB J. 2022 Jul;36(7):e22380. doi: 10.1096/fj.202200393R.

本文引用的文献

1
Use of Protein Kinase-Focused Compound Libraries for the Discovery of New Inositol Phosphate Kinase Inhibitors.
SLAS Discov. 2018 Oct;23(9):982-988. doi: 10.1177/2472555218775323. Epub 2018 May 29.
2
The inositol pyrophosphate pathway in health and diseases.
Biol Rev Camb Philos Soc. 2018 May;93(2):1203-1227. doi: 10.1111/brv.12392. Epub 2017 Dec 27.
3
Development of a homogenous high-throughput assay for inositol hexakisphosphate kinase 1 activity.
PLoS One. 2017 Nov 29;12(11):e0188852. doi: 10.1371/journal.pone.0188852. eCollection 2017.
4
Microbial inositol polyphosphate metabolic pathway as drug development target.
Adv Biol Regul. 2018 Jan;67:74-83. doi: 10.1016/j.jbior.2017.09.007. Epub 2017 Sep 22.
5
Target class drug discovery.
Nat Chem Biol. 2017 Sep 19;13(10):1053-1056. doi: 10.1038/nchembio.2473.
7
Kinetic and structural analyses reveal residues in phosphoinositide 3-kinase α that are critical for catalysis and substrate recognition.
J Biol Chem. 2017 Aug 18;292(33):13541-13550. doi: 10.1074/jbc.M116.772426. Epub 2017 Jul 4.
8
The Expanding Significance of Inositol Polyphosphate Multikinase as a Signaling Hub.
Mol Cells. 2017 May 31;40(5):315-321. doi: 10.14348/molcells.2017.0066. Epub 2017 May 29.
9
Intimate connections: Inositol pyrophosphates at the interface of metabolic regulation and cell signaling.
J Cell Physiol. 2018 Mar;233(3):1897-1912. doi: 10.1002/jcp.26017. Epub 2017 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验