Shears Stephen B, Wang Huanchen
Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
Adv Biol Regul. 2019 Jan;71:118-127. doi: 10.1016/j.jbior.2018.10.006. Epub 2018 Oct 27.
The protein kinase family is characterized by substantial conservation of architectural elements that are required for both ATP binding and phosphotransferase activity. Many of these structural features have also been identified in homologous enzymes that phosphorylate a variety of alternative, non-protein substrates. A comparative structural analysis of these different kinase sub-classes is a portal to a greater understanding of reaction mechanisms, enzyme regulation, inhibitor-development strategies, and superfamily-level evolutionary relationships. To serve such advances, we review structural elements of the protein kinase fold that are conserved in the subfamily of inositol phosphate kinases (InsPKs) that share a PxxxDxKxG catalytic signature: inositol 1,4,5-trisphosphate kinase (IP3K), inositol hexakisphosphate kinase (IP6K), and inositol polyphosphate multikinase (IPMK). We describe conservation of the fundamental two-lobe kinase architecture: an N-lobe constructed upon an anti-parallel β-strand scaffold, which is coupled to a largely helical C-lobe by a single, adenine-binding hinge. This equivalency also includes a G-loop that embraces the β/γ-phosphates of ATP, a transition-state stabilizing residue (Lys/His), and a Mg-positioning aspartate residue within a catalytic triad. Furthermore, we expand this list of conserved structural features to include some not previously identified in InsPKs: a 'gatekeeper' residue in the N-lobe, and an 'αF'-like helix in the C-lobe that anchors two structurally-stabilizing, hydrophobic spines, formed from non-consecutive residues that span the two lobes. We describe how this wide-ranging structural homology can be exploited to develop lead inhibitors of IP6K and IPMK, by using strategies similar to those that have generated ATP-competing inhibitors of protein-kinases. We provide several examples to illustrate how such an approach could benefit human health.
蛋白激酶家族的特点是其结构元件高度保守,这些元件对于ATP结合和磷酸转移酶活性都是必需的。在磷酸化各种替代的非蛋白质底物的同源酶中也发现了许多这些结构特征。对这些不同激酶亚类进行比较结构分析,是深入了解反应机制、酶调节、抑制剂开发策略以及超家族水平进化关系的一个途径。为了推动这些进展,我们综述了在肌醇磷酸激酶(InsPKs)亚家族中保守的蛋白激酶折叠结构元件,这些亚家族具有PxxxDxKxG催化特征:肌醇1,4,5-三磷酸激酶(IP3K)、肌醇六磷酸激酶(IP6K)和肌醇多磷酸多激酶(IPMK)。我们描述了基本的双叶激酶结构的保守性:一个基于反平行β链支架构建的N叶,它通过一个单一的腺嘌呤结合铰链与一个主要为螺旋结构的C叶相连。这种等效性还包括一个环绕ATP的β/γ磷酸基团的G环、一个稳定过渡态的残基(赖氨酸/组氨酸)以及催化三联体中的一个定位镁离子的天冬氨酸残基。此外,我们将这些保守结构特征的列表扩展到包括一些以前在InsPKs中未发现的特征:N叶中的一个“守门”残基,以及C叶中的一个类似“αF”的螺旋,该螺旋锚定了两个由跨越两个叶的非连续残基形成的结构稳定的疏水棘。我们描述了如何利用这种广泛的结构同源性,通过类似于产生蛋白激酶ATP竞争性抑制剂的策略,来开发IP6K和IPMK的先导抑制剂。我们提供了几个例子来说明这种方法如何有益于人类健康。