文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于在多种环境和复杂地形中运动的微型磁性翻滚机器人的设计

Design of Microscale Magnetic Tumbling Robots for Locomotion in Multiple Environments and Complex Terrains.

作者信息

Bi Chenghao, Guix Maria, Johnson Benjamin V, Jing Wuming, Cappelleri David J

机构信息

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088, USA.

A. Leon Linton Department of Mechanical Engineering, Lawrence Technological University, Southfield, MI 48075-1058, USA.

出版信息

Micromachines (Basel). 2018 Feb 3;9(2):68. doi: 10.3390/mi9020068.


DOI:10.3390/mi9020068
PMID:30393344
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6187462/
Abstract

This paper presents several variations of a microscale magnetic tumbling ( μ TUM) robot capable of traversing complex terrains in dry and wet environments. The robot is fabricated by photolithography techniques and consists of a polymeric body with two sections with embedded magnetic particles aligned at the ends and a middle nonmagnetic bridge section. The robot's footprint dimensions are 400 μ m × 800 μ m. Different end geometries are used to test the optimal conditions for low adhesion and increased dynamic response to an actuating external rotating magnetic field. When subjected to a magnetic field as low as 7 mT in dry conditions, this magnetic microrobot is able to operate with a tumbling locomotion mode and translate with speeds of over 60 body lengths/s (48 mm/s) in dry environments and up to 17 body lengths/s (13.6 mm/s) in wet environments. Two different tumbling modes were observed and depend on the alignment of the magnetic particles. A technique was devised to measure the magnetic particle alignment angle relative to the robot's geometry. Rotational frequency limits were observed experimentally, becoming more prohibitive as environment viscosity increases. The μ TUM's performance was studied when traversing inclined planes (up to 60°), showing promising climbing capabilities in both dry and wet conditions. Maximum open loop straight-line trajectory errors of less than 4% and 2% of the traversal distance in the vertical and horizontal directions, respectively, for the μ TUM were observed. Full directional control of μ TUM was demonstrated through the traversal of a P-shaped trajectory. Additionally, successful locomotion of the optimized μ TUM design over complex terrains was also achieved. By implementing machine vision control and/or embedding of payloads in the middle section of the robot, it is possible in the future to upgrade the current design with computer-optimized mobility through multiple environments and the ability to perform drug delivery tasks for biomedical applications.

摘要

本文介绍了一种微尺度磁翻滚(μTUM)机器人的几种变体,该机器人能够在干燥和潮湿环境中穿越复杂地形。该机器人采用光刻技术制造,由一个聚合物主体组成,主体有两个部分,两端嵌入有对齐的磁性颗粒,中间是一个非磁性桥接部分。机器人的占地面积尺寸为400μm×800μm。采用不同的端部几何形状来测试低附着力和提高对外部旋转磁场驱动的动态响应的最佳条件。在干燥条件下,当受到低至7mT的磁场作用时,这种磁性微型机器人能够以翻滚运动模式运行,在干燥环境中的平移速度超过60倍体长/秒(48毫米/秒),在潮湿环境中高达17倍体长/秒(13.6毫米/秒)。观察到两种不同的翻滚模式,这取决于磁性颗粒的排列方式。设计了一种技术来测量磁性颗粒相对于机器人几何形状的排列角度。通过实验观察到了旋转频率限制,随着环境粘度的增加,这种限制变得更加严格。研究了μTUM在穿越倾斜平面(高达60°)时的性能,结果表明在干燥和潮湿条件下都具有良好的攀爬能力。观察到μTUM在垂直和水平方向上的最大开环直线轨迹误差分别小于穿越距离的4%和2%。通过P形轨迹的穿越展示了μTUM的全向控制。此外,优化后的μTUM设计在复杂地形上也成功实现了运动。通过实施机器视觉控制和/或将有效载荷嵌入机器人的中间部分,未来有可能通过计算机优化的多环境移动性以及执行生物医学应用中的药物输送任务的能力来升级当前设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/78f5f9c275a1/micromachines-09-00068-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/bc6108423f01/micromachines-09-00068-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/aa5bd44485a6/micromachines-09-00068-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/df0edb088c98/micromachines-09-00068-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/bb87f614091c/micromachines-09-00068-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/819b2f28296e/micromachines-09-00068-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/b4e55cace764/micromachines-09-00068-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/1205b6064292/micromachines-09-00068-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/bf94af9c44e3/micromachines-09-00068-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/a46bf8aab483/micromachines-09-00068-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/4f9b1a94d812/micromachines-09-00068-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/78f5f9c275a1/micromachines-09-00068-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/bc6108423f01/micromachines-09-00068-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/aa5bd44485a6/micromachines-09-00068-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/df0edb088c98/micromachines-09-00068-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/bb87f614091c/micromachines-09-00068-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/819b2f28296e/micromachines-09-00068-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/b4e55cace764/micromachines-09-00068-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/1205b6064292/micromachines-09-00068-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/bf94af9c44e3/micromachines-09-00068-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/a46bf8aab483/micromachines-09-00068-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/4f9b1a94d812/micromachines-09-00068-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/6187462/78f5f9c275a1/micromachines-09-00068-g011.jpg

相似文献

[1]
Design of Microscale Magnetic Tumbling Robots for Locomotion in Multiple Environments and Complex Terrains.

Micromachines (Basel). 2018-2-3

[2]
An Insect-Inspired Terrains-Adaptive Soft Millirobot with Multimodal Locomotion and Transportation Capability.

Micromachines (Basel). 2022-9-22

[3]
Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs.

Front Robot AI. 2018-6-19

[4]
Body-terrain interaction affects large bump traversal of insects and legged robots.

Bioinspir Biomim. 2018-2-2

[5]
Biodegradable Magnetic Hydrogel Robot with Multimodal Locomotion for Targeted Cargo Delivery.

ACS Appl Mater Interfaces. 2023-6-21

[6]
Magnetic-actuated hydrogel microrobots with multimodal motion and collective behavior.

J Mater Chem B. 2024-7-31

[7]
Multimodal Locomotion and Cargo Transportation of Magnetically Actuated Quadruped Soft Microrobots.

Cyborg Bionic Syst. 2022

[8]
Intelligent Rock-Climbing Robot Capable of Multimodal Locomotion and Hybrid Bioinspired Attachment.

Adv Sci (Weinh). 2024-10

[9]
3D Printed Biomimetic Soft Robot with Multimodal Locomotion and Multifunctionality.

Soft Robot. 2022-2

[10]
Wireless Millimeter-Size Soft Climbing Robots with Omnidirectional Steerability on Tissue Surfaces.

IEEE Robot Autom Lett. 2023-9

引用本文的文献

[1]
A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation.

Micromachines (Basel). 2024-3-29

[2]
Inductive sensing of magnetic microrobots under actuation by rotating magnetic fields.

PNAS Nexus. 2023-9-12

[3]
Cellular Manipulation Using Rolling Microrobots.

Int Conf Manip Autom Robot Small Scales. 2022-7

[4]
A Magnetic Millirobot Walks on Slippery Biological Surfaces for Targeted Cargo Delivery.

Micromachines (Basel). 2023-7-18

[5]
Improving disease prevention, diagnosis, and treatment using novel bionic technologies.

Bioeng Transl Med. 2022-6-21

[6]
An Insect-Inspired Terrains-Adaptive Soft Millirobot with Multimodal Locomotion and Transportation Capability.

Micromachines (Basel). 2022-9-22

[7]
Soft Capsule Magnetic Millirobots for Region-Specific Drug Delivery in the Central Nervous System.

Front Robot AI. 2021-7-22

[8]
Melt Electrospinning Writing of Magnetic Microrobots.

Adv Sci (Weinh). 2021-1-4

[9]
Micro/nanoscale magnetic robots for biomedical applications.

Mater Today Bio. 2020-10-30

[10]
Medical Micro/Nanorobots in Precision Medicine.

Adv Sci (Weinh). 2020-10-4

本文引用的文献

[1]
Micro/Nanorobots for Biomedicine: Delivery, Surgery, Sensing, and Detoxification.

Sci Robot. 2017-3-15

[2]
Highly Efficient Freestyle Magnetic Nanoswimmer.

Nano Lett. 2017-7-19

[3]
Nano and micro architectures for self-propelled motors.

Sci Technol Adv Mater. 2015-1-28

[4]
Biomedical Applications of Untethered Mobile Milli/Microrobots.

Proc IEEE Inst Electr Electron Eng. 2015-2

[5]
Fabrication and Manipulation of Ciliary Microrobots with Non-reciprocal Magnetic Actuation.

Sci Rep. 2016-7-29

[6]
Soft micromachines with programmable motility and morphology.

Nat Commun. 2016-7-22

[7]
Cellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors.

Nano Lett. 2015-12-23

[8]
Magneto-Acoustic Hybrid Nanomotor.

Nano Lett. 2015-6-19

[9]
Synthetic micro/nanomotors in drug delivery.

Nanoscale. 2014-8-6

[10]
Nano/micromotors in (bio)chemical science applications.

Chem Rev. 2014-6-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索