Suppr超能文献

基于人工凝胶的细胞器用于无细胞基因表达反应的空间组织。

Artificial Gel-Based Organelles for Spatial Organization of Cell-Free Gene Expression Reactions.

机构信息

Physics Department and ZNN, Technische Universität München, Am Coulombwall 4a, 85748, Garching, Germany.

出版信息

Angew Chem Int Ed Engl. 2018 Dec 21;57(52):17245-17248. doi: 10.1002/anie.201809374. Epub 2018 Nov 27.

Abstract

Gel-based artificial organelles have been developed that enable sequence-specific and programmable localization of cell-free transcription and translation reactions inside an artificial cellular system. To this end, we utilize agarose microgels covalently modified with DNA templates coding for various functions and encapsulate them into emulsion droplets. We show that RNA signals transcribed from transcription organelles can be specifically targeted to capture organelles via hybridization to the corresponding DNA addresses. We also demonstrate that mRNA molecules, produced from transcription organelles and controlled by toehold switch riboregulators, are only translated in translation organelles containing their cognate DNA triggers. Spatial confinement of transcription and translation in separate organelles is thus superficially similar to gene expression in eukaryotic cells. Combining communicating gel spheres with specialized functions opens up new possibilities for programming artificial cellular systems at the organelle level.

摘要

已开发出基于凝胶的人工细胞器,可实现无细胞转录和翻译反应在人工细胞系统内的序列特异性和可编程定位。为此,我们利用琼脂糖微凝胶共价修饰有编码各种功能的 DNA 模板,并将其封装在乳液液滴中。我们表明,从转录细胞器转录的 RNA 信号可以通过与相应的 DNA 地址杂交来特异性靶向捕获细胞器。我们还证明,来自转录细胞器的 mRNA 分子受碱基对开关核糖开关调控,仅在含有其同源 DNA 触发物的翻译细胞器中翻译。因此,转录和翻译在单独细胞器中的空间限制与真核细胞中的基因表达表面上相似。将具有通信功能的凝胶球体与专门功能相结合,为在细胞器水平上对人工细胞系统进行编程开辟了新的可能性。

相似文献

1
Artificial Gel-Based Organelles for Spatial Organization of Cell-Free Gene Expression Reactions.
Angew Chem Int Ed Engl. 2018 Dec 21;57(52):17245-17248. doi: 10.1002/anie.201809374. Epub 2018 Nov 27.
3
Co-transcriptional production of programmable RNA condensates and synthetic organelles.
Nat Nanotechnol. 2024 Nov;19(11):1665-1673. doi: 10.1038/s41565-024-01726-x. Epub 2024 Jul 30.
4
Cell-Free Expressed Membraneless Organelles Inhibit Translation in Synthetic Cells.
ACS Biomater Sci Eng. 2024 Feb 12;10(2):773-781. doi: 10.1021/acsbiomaterials.3c01052. Epub 2024 Jan 16.
5
Photoswitchable Molecular Communication between Programmable DNA-Based Artificial Membraneless Organelles.
Angew Chem Int Ed Engl. 2022 Mar 28;61(14):e202117500. doi: 10.1002/anie.202117500. Epub 2022 Feb 15.
6
Quantitative Characterization of Translational Riboregulators Using an in Vitro Transcription-Translation System.
ACS Synth Biol. 2018 May 18;7(5):1269-1278. doi: 10.1021/acssynbio.7b00387. Epub 2018 Apr 18.
7
Recent Progress in Micro/Nanoreactors toward the Creation of Artificial Organelles.
Adv Healthc Mater. 2018 Mar;7(5). doi: 10.1002/adhm.201700917. Epub 2017 Dec 4.
8
Active coacervate droplets as a model for membraneless organelles and protocells.
Nat Commun. 2020 Oct 14;11(1):5167. doi: 10.1038/s41467-020-18815-9.
9
Photoreceptor-Like Signal Transduction Between Polymer-Based Protocells.
Adv Mater. 2025 Jan;37(3):e2413981. doi: 10.1002/adma.202413981. Epub 2024 Nov 3.
10
Programmable Artificial Cells Using Histamine-Responsive Synthetic Riboswitch.
J Am Chem Soc. 2019 Jul 17;141(28):11103-11114. doi: 10.1021/jacs.9b03300. Epub 2019 Jun 26.

引用本文的文献

1
Nuclear Assembly in Giant Unilamellar Vesicles Encapsulating Xenopus Egg Extract.
Small. 2025 May 20:e2412126. doi: 10.1002/smll.202412126.
3
Biomimetic Materials to Fabricate Artificial Cells.
Chem Rev. 2024 Dec 11;124(23):13178-13215. doi: 10.1021/acs.chemrev.4c00241. Epub 2024 Nov 26.
4
Cell-Free Gene Expression in Bioprinted Fluidic Networks.
ACS Synth Biol. 2024 Aug 16;13(8):2447-2456. doi: 10.1021/acssynbio.4c00187. Epub 2024 Jul 23.
5
Broccoli aptamer allows quantitative transcription regulation studies in vitro.
PLoS One. 2024 Jun 13;19(6):e0304677. doi: 10.1371/journal.pone.0304677. eCollection 2024.
6
Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks.
Adv Sci (Weinh). 2024 Feb;11(8):e2305837. doi: 10.1002/advs.202305837. Epub 2023 Nov 20.
7
DNA droplets for intelligent and dynamical artificial cells: from the viewpoint of computation and non-equilibrium systems.
Interface Focus. 2023 Aug 11;13(5):20230021. doi: 10.1098/rsfs.2023.0021. eCollection 2023 Oct 6.
8
Advancing synthetic biology through cell-free protein synthesis.
Comput Struct Biotechnol J. 2023 May 4;21:2899-2908. doi: 10.1016/j.csbj.2023.05.003. eCollection 2023.
9
Reaction-Diffusion Patterning of DNA-Based Artificial Cells.
J Am Chem Soc. 2022 Sep 28;144(38):17468-17476. doi: 10.1021/jacs.2c06140. Epub 2022 Sep 14.
10
Discovery of a phase-separating small molecule that selectively sequesters tubulin in cells.
Chem Sci. 2022 Apr 20;13(19):5760-5766. doi: 10.1039/d1sc07151c. eCollection 2022 May 18.

本文引用的文献

1
Gene Expression on DNA Biochips Patterned with Strand-Displacement Lithography.
Angew Chem Int Ed Engl. 2018 Apr 16;57(17):4783-4786. doi: 10.1002/anie.201800281. Epub 2018 Mar 15.
2
Gene-Mediated Chemical Communication in Synthetic Protocell Communities.
ACS Synth Biol. 2018 Feb 16;7(2):339-346. doi: 10.1021/acssynbio.7b00306. Epub 2017 Nov 8.
3
Synchrony and pattern formation of coupled genetic oscillators on a chip of artificial cells.
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11609-11614. doi: 10.1073/pnas.1710620114. Epub 2017 Oct 16.
4
Synthesis and materialization of a reaction-diffusion French flag pattern.
Nat Chem. 2017 Oct;9(10):990-996. doi: 10.1038/nchem.2770. Epub 2017 May 1.
5
Engineering genetic circuit interactions within and between synthetic minimal cells.
Nat Chem. 2017 May;9(5):431-439. doi: 10.1038/nchem.2644. Epub 2016 Nov 14.
6
Predatory behaviour in synthetic protocell communities.
Nat Chem. 2017 Feb;9(2):110-119. doi: 10.1038/nchem.2617. Epub 2016 Oct 3.
7
Two-Way Chemical Communication between Artificial and Natural Cells.
ACS Cent Sci. 2017 Feb 22;3(2):117-123. doi: 10.1021/acscentsci.6b00330. Epub 2017 Jan 25.
8
Microscopic agents programmed by DNA circuits.
Nat Nanotechnol. 2017 May;12(4):351-359. doi: 10.1038/nnano.2016.299. Epub 2017 Jan 30.
9
Protein Synthesis in Coupled and Uncoupled Cell-Free Prokaryotic Gene Expression Systems.
ACS Synth Biol. 2016 Dec 16;5(12):1433-1440. doi: 10.1021/acssynbio.6b00010. Epub 2016 Jul 5.
10
Chemical communication between bacteria and cell-free gene expression systems within linear chains of emulsion droplets.
Integr Biol (Camb). 2016 Apr 18;8(4):564-70. doi: 10.1039/c5ib00301f. Epub 2016 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验