Lyu Qiuqiu, Zhu Tenglong, Xu Na, Qu Hongxia, Zhong Qin
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, China.
ACS Appl Mater Interfaces. 2023 Aug 30;15(34):40588-40594. doi: 10.1021/acsami.3c08019. Epub 2023 Aug 17.
Incorporating a dense GDC (GdCeO) barrier layer is an effective strategy to avoid harmful reactions between the LSCF (LaSrCoFeO) cathode and the YSZ (yttria-stabilized zirconia) electrolyte. In this study, a micron-scale and dense GDC barrier layer is obtained by the combination of spin coating, low-temperature sintering, and hydrothermal-assisted densification. The cell exhibits decent output performance, with a peak power density of 1.07 W/cm at 780 °C. The ohmic and polarization resistances are significantly decreased by ∼44 and ∼36% than the cell with the screen-printed GDC barrier layer, respectively. Due to the low sintering temperature of the GDC barrier layer at 1200 °C, there is nearly no generation of (Ce, Zr)O at the interface of GDC/YSZ. The thin and dense GDC barrier layer effectively shortens the oxygen-ion conduction pathway, as well as hinders Sr migration from the cathode, highlighting its remarkable potential for industrial applications.
引入致密的GDC(GdCeO)阻挡层是避免LSCF(LaSrCoFeO)阴极与YSZ(钇稳定氧化锆)电解质之间发生有害反应的有效策略。在本研究中,通过旋涂、低温烧结和水热辅助致密化相结合的方法获得了微米级的致密GDC阻挡层。该电池表现出良好的输出性能,在780°C时的峰值功率密度为1.07 W/cm²。与具有丝网印刷GDC阻挡层的电池相比,欧姆电阻和极化电阻分别显著降低了约44%和约36%。由于GDC阻挡层在1200°C的低温烧结温度,在GDC/YSZ界面几乎没有生成(Ce,Zr)O。薄而致密的GDC阻挡层有效地缩短了氧离子传导路径,同时阻碍了Sr从阴极迁移,突出了其在工业应用中的巨大潜力。