Martínez-Galdámez Mario, Escartín Jorge, Pabón Boris, Diaz Carlos, Martín-Reyes Roberto, Hermosín Antonio, Crespo Eduardo, Rodríguez Claudio, Monedero Gonzalo, Joshi Krishna, Lopes Demetrius K
1 Endovascular Neurosurgery/Interventional Neurosurgery, Interventional Institute, Fundación Jiménez-Diaz, Madrid, Spain.
2 Angioteam-Angiosur, Medellín, Colombia.
Interv Neuroradiol. 2019 Apr;25(2):150-156. doi: 10.1177/1591019918808466. Epub 2018 Nov 5.
The new generation of flow diverters includes a surface modification with a synthetic biocompatible polymer, which makes the device more biocompatible and less thrombogenic. Optical coherence tomography (OCT) can be used to visualize perforators, stent wall apposition, and intra-stent thrombus. Unfortunately real world application of this technology has been limited because of the limited navigability of these devices in the intracranial vessels. In this report, we share our experience of using 3D-printed neurovascular anatomy models to simulate and test the navigability of a commercially available OCT system and to show the application of this device in a patient treated with the new generation of surface modified flow diverters.
Navigability of OCT catheters was tested in vitro using four different 3D-printed silicone replicas of the intracranial anterior circulation, after the implantation of surface modified devices. Intermediate catheters were used in different tortuous anatomies and positions. After this assessment, we describe the OCT image analysis of a Pipeline Shield for treating an unruptured posterior communicating artery (PCOM) aneurysm.
Use of intermediate catheters in the 3D-printed replicas was associated with better navigation of the OCT catheters in favorable anatomies but did not help as much in unfavorable anatomies. OCT image analysis of a PCOM aneurysm treated with Pipeline Embolization Device Shield demonstrated areas of unsatisfactory apposition with no thrombus formation.
OCT improves the understanding of the flow diversion technology. The development of less thrombogenic devices, like the Pipeline Flex with Shield Technology, reinforces the need for intraluminal imaging for neurovascular application.
新一代血流导向装置包括用合成生物相容性聚合物进行表面改性,这使该装置更具生物相容性且血栓形成性更低。光学相干断层扫描(OCT)可用于观察穿支血管、支架壁贴合情况及支架内血栓。不幸的是,由于这些装置在颅内血管中的可操作性有限,该技术在现实世界中的应用受到限制。在本报告中,我们分享了使用3D打印神经血管解剖模型来模拟和测试市售OCT系统的可操作性,并展示该装置在接受新一代表面改性血流导向装置治疗的患者中的应用经验。
在植入表面改性装置后,使用四种不同的颅内前循环3D打印硅胶复制品在体外测试OCT导管的可操作性。中间导管用于不同的迂曲解剖结构和位置。在此评估之后,我们描述了用于治疗未破裂后交通动脉(PCOM)动脉瘤的Pipeline Shield的OCT图像分析。
在3D打印复制品中使用中间导管在有利的解剖结构中与OCT导管更好的导航相关,但在不利的解剖结构中帮助不大。对使用Pipeline栓塞装置Shield治疗的PCOM动脉瘤进行OCT图像分析显示,存在贴合不满意区域且无血栓形成。
OCT提高了对血流导向技术的理解。像带有Shield技术的Pipeline Flex这样血栓形成性更低的装置的开发,强化了神经血管应用中腔内成像的必要性。