Suppr超能文献

二聚体马达蛋白的统一行走模型。

A Unified Walking Model for Dimeric Motor Proteins.

机构信息

Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan.

Department of Physics, University of Tokyo, Hongo Bunkyo-ku, Tokyo, Japan.

出版信息

Biophys J. 2018 Nov 20;115(10):1981-1992. doi: 10.1016/j.bpj.2018.09.032. Epub 2018 Oct 16.

Abstract

Dimeric motor proteins, kinesin-1, cytoplasmic dynein-1, and myosin-V, move stepwise along microtubules and actin filaments with a regular step size. The motors take backward as well as forward steps. The step ratio r and dwell time τ, which are the ratio of the number of backward steps to the number of forward steps and the time between consecutive steps, respectively, were observed to change with the load. To understand the movement of motor proteins, we constructed a unified and simple mathematical model to explain the load dependencies of r and of τ measured for the above three types of motors quantitatively. Our model consists of three states, and the forward and backward steps are represented by the cycles of transitions visiting different pairs of states among the three, implying that a backward step is not the reversal of a forward step. Each of r and τ is given by a simple expression containing two exponential functions. The experimental data for r and τ for dynein available in the literature are not sufficient for a quantitative analysis, which is in contrast to those for kinesin and myosin-V. We reanalyze the data to obtain r and τ of native dynein to make up the insufficient data to fit them to the model. Our model successfully describes the behavior of r and τ for all of the motors in a wide range of loads from large assisting loads to superstall loads.

摘要

二聚体马达蛋白,如驱动蛋白-1、细胞质动力蛋白-1 和肌球蛋白-V,沿着微管和肌动蛋白丝以规则的步长进行逐步运动。这些马达既能向前运动,也能向后运动。步长比 r 和停留时间 τ,分别是向后步长与向前步长的比值,以及连续两步之间的时间间隔,观察到它们随负载而变化。为了理解马达蛋白的运动,我们构建了一个统一而简单的数学模型,以定量解释上述三种类型的马达的 r 和 τ 随负载的依赖性。我们的模型由三个状态组成,向前和向后的步骤分别由访问三个状态之间不同对的状态的循环来表示,这意味着向后的步骤不是向前步骤的逆转。r 和 τ 中的每一个都由一个简单的表达式给出,其中包含两个指数函数。文献中关于动力蛋白的 r 和 τ 的实验数据不足以进行定量分析,这与驱动蛋白和肌球蛋白-V 形成对比。我们重新分析了数据,以获得天然动力蛋白的 r 和 τ,以弥补数据不足,将其拟合到模型中。我们的模型成功地描述了所有马达在从大辅助负载到超停负载的广泛负载范围内 r 和 τ 的行为。

相似文献

1
A Unified Walking Model for Dimeric Motor Proteins.
Biophys J. 2018 Nov 20;115(10):1981-1992. doi: 10.1016/j.bpj.2018.09.032. Epub 2018 Oct 16.
3
Critical motor number for fractional steps of cytoskeletal filaments in gliding assays.
PLoS One. 2012;7(8):e43219. doi: 10.1371/journal.pone.0043219. Epub 2012 Aug 21.
4
Force-dependent stepping kinetics of myosin-V.
Biophys J. 2005 Jun;88(6):4402-10. doi: 10.1529/biophysj.104.053504. Epub 2005 Mar 11.
5
ATP-Concentration- and Force-Dependent Chemomechanical Coupling of Kinesin Molecular Motors.
J Chem Inf Model. 2019 Jan 28;59(1):360-372. doi: 10.1021/acs.jcim.8b00577. Epub 2018 Dec 17.
6
Stepping behavior of two-headed kinesin motors.
Biochim Biophys Acta. 2008 Sep;1777(9):1195-202. doi: 10.1016/j.bbabio.2008.04.040. Epub 2008 May 1.
8
Detection of fractional steps in cargo movement by the collective operation of kinesin-1 motors.
Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10847-52. doi: 10.1073/pnas.0701864104. Epub 2007 Jun 14.
9
Tracking melanosomes inside a cell to study molecular motors and their interaction.
Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5378-82. doi: 10.1073/pnas.0700145104. Epub 2007 Mar 16.
10
Molecular motors: thermodynamics and the random walk.
Proc Biol Sci. 2001 Oct 22;268(1481):2113-22. doi: 10.1098/rspb.2001.1764.

引用本文的文献

1
Extreme-value analysis in nano-biological systems: applications and implications.
Biophys Rev. 2024 Oct 2;16(5):571-579. doi: 10.1007/s12551-024-01239-w. eCollection 2024 Oct.
2
Modeling the motion of disease-associated KIF1A heterodimers.
Biophys J. 2023 Nov 21;122(22):4348-4359. doi: 10.1016/j.bpj.2023.10.014. Epub 2023 Oct 17.
3
A model for the chemomechanical coupling of myosin-V molecular motors.
RSC Adv. 2019 Aug 27;9(46):26734-26747. doi: 10.1039/c9ra05072h. eCollection 2019 Aug 23.
4
A model of processive walking and slipping of kinesin-8 molecular motors.
Sci Rep. 2021 Apr 13;11(1):8081. doi: 10.1038/s41598-021-87532-0.
5
Backstepping Mechanism of Kinesin-1.
Biophys J. 2020 Nov 17;119(10):1984-1994. doi: 10.1016/j.bpj.2020.09.034. Epub 2020 Oct 6.
6
Dynamics of ATP-dependent and ATP-independent steppings of myosin-V on actin: catch-bond characteristics.
J R Soc Interface. 2020 Apr;17(165):20200029. doi: 10.1098/rsif.2020.0029. Epub 2020 Apr 8.
7
A model for the chemomechanical coupling of the mammalian cytoplasmic dynein molecular motor.
Eur Biophys J. 2019 Oct;48(7):609-619. doi: 10.1007/s00249-019-01386-z. Epub 2019 Jul 5.
8
Physical parameters describing neuronal cargo transport by kinesin UNC-104.
Biophys Rev. 2019 Jun;11(3):471-482. doi: 10.1007/s12551-019-00548-9. Epub 2019 May 21.

本文引用的文献

1
Catch bonding in the forced dissociation of a polymer endpoint.
Phys Rev E. 2018 Apr;97(4-1):042405. doi: 10.1103/PhysRevE.97.042405.
2
Single-molecule mechanochemical characterization of E. coli pol III core catalytic activity.
Protein Sci. 2017 Jul;26(7):1413-1426. doi: 10.1002/pro.3152. Epub 2017 Mar 16.
3
The Mechanochemical Cycle of Mammalian Kinesin-2 KIF3A/B under Load.
Curr Biol. 2015 May 4;25(9):1166-75. doi: 10.1016/j.cub.2015.03.013. Epub 2015 Apr 9.
5
Kinesin processivity is gated by phosphate release.
Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14136-40. doi: 10.1073/pnas.1410943111. Epub 2014 Sep 2.
6
Design principles governing the motility of myosin V.
Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):E4059-68. doi: 10.1073/pnas.1312393110. Epub 2013 Oct 7.
8
A universal pathway for kinesin stepping.
Nat Struct Mol Biol. 2011 Aug 14;18(9):1020-7. doi: 10.1038/nsmb.2104.
9
Chemomechanical coupling and motor cycles of myosin V.
Biophys J. 2011 Apr 6;100(7):1747-55. doi: 10.1016/j.bpj.2011.02.012.
10
Neck-linker docking coordinates the kinetics of kinesin's heads.
Biophys J. 2011 Apr 6;100(7):1729-36. doi: 10.1016/j.bpj.2011.01.039.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验