Suppr超能文献

颈连器对接协调了驱动蛋白头部的动力学。

Neck-linker docking coordinates the kinetics of kinesin's heads.

机构信息

Department of Biological Physics, Eötvös University, Budapest, Hungary.

出版信息

Biophys J. 2011 Apr 6;100(7):1729-36. doi: 10.1016/j.bpj.2011.01.039.

Abstract

Conventional kinesin is a two-headed homodimeric motor protein, which is able to walk along microtubules processively by hydrolyzing ATP. Its neck linkers, which connect the two motor domains and can undergo a docking/undocking transition, are widely believed to play the key role in the coordination of the chemical cycles of the two motor domains and, consequently, in force production and directional stepping. Although many experiments, often complemented with partial kinetic modeling of specific pathways, support this idea, the ultimate test of the viability of this hypothesis requires the construction of a complete kinetic model. Considering the two neck linkers as entropic springs that are allowed to dock to their head domains, and incorporating only the few most relevant kinetic and structural properties of the individual heads, we develop here the first, to our knowledge, detailed, thermodynamically consistent model of kinesin that can 1), explain the cooperation of the heads (including their gating mechanisms) during walking, and 2), reproduce much of the available experimental data (speed, dwell-time distribution, randomness, processivity, hydrolysis rate, etc.) under a wide range of conditions (nucleotide concentrations, loading force, neck-linker length and composition, etc.). Besides revealing the mechanism by which kinesin operates, our model also makes it possible to look into the experimentally inaccessible details of the mechanochemical cycle and predict how certain changes in the protein affect its motion.

摘要

传统的驱动蛋白是一种具有两个头部的同二聚体马达蛋白,它能够通过水解 ATP 沿着微管进行连续运动。其连接两个马达结构域的颈环,能够经历对接/脱接的转变,被广泛认为在两个马达结构域的化学循环协调中起着关键作用,进而在力的产生和定向运动中发挥作用。尽管许多实验,通常辅以特定途径的部分动力学建模,支持了这一观点,但对这一假设的可行性进行最终检验需要构建一个完整的动力学模型。考虑到两个颈环作为允许对接其头部结构域的熵弹簧,并仅包含各个头部的几个最相关的动力学和结构特性,我们在这里开发了第一个,据我们所知,详细的、热力学一致的驱动蛋白模型,该模型能够 1)解释头部在运动过程中的协同作用(包括它们的门控机制),以及 2)在广泛的条件下(核苷酸浓度、加载力、颈环长度和组成等)再现大部分可用的实验数据(速度、停留时间分布、随机性、连续性、水解率等)。除了揭示驱动蛋白的工作机制外,我们的模型还可以深入了解机械化学循环中实验无法触及的细节,并预测蛋白质的某些变化如何影响其运动。

相似文献

2
Kinesin's walk: springy or gated head coordination?驱动蛋白的行走:弹性还是门控头部协同作用?
Biosystems. 2009 May;96(2):121-6. doi: 10.1016/j.biosystems.2008.12.002. Epub 2008 Dec 27.
4
Kinesin's backsteps under mechanical load.驱动蛋白在机械负载下的后退步。
Phys Chem Chem Phys. 2009 Jun 28;11(24):4899-910. doi: 10.1039/b903536b. Epub 2009 May 18.
6
An atomic-level mechanism for activation of the kinesin molecular motors.一种激活驱动蛋白分子马达的原子水平机制。
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4111-6. doi: 10.1073/pnas.0911208107. Epub 2010 Feb 16.
9
The load dependence of kinesin's mechanical cycle.驱动蛋白机械循环的负载依赖性。
Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8539-44. doi: 10.1073/pnas.94.16.8539.
10
A universal pathway for kinesin stepping.驱动蛋白行走的通用途径。
Nat Struct Mol Biol. 2011 Aug 14;18(9):1020-7. doi: 10.1038/nsmb.2104.

本文引用的文献

2
The relevance of neck linker docking in the motility of kinesin.颈部连接子对接在驱动蛋白运动性中的相关性。
Biosystems. 2008 Jul-Aug;93(1-2):29-33. doi: 10.1016/j.biosystems.2008.04.006. Epub 2008 Apr 26.
3
The role of microtubules in processive kinesin movement.微管在进行性驱动蛋白运动中的作用。
Trends Cell Biol. 2008 Mar;18(3):128-35. doi: 10.1016/j.tcb.2008.01.002. Epub 2008 Feb 15.
5
Kinesin steps do not alternate in size.驱动蛋白的步幅大小并非交替变化。
Biophys J. 2008 Feb 1;94(3):L20-2. doi: 10.1529/biophysj.107.126839. Epub 2007 Dec 14.
6
How kinesin waits between steps.驱动蛋白在步移之间是如何等待的。
Nature. 2007 Nov 29;450(7170):750-4. doi: 10.1038/nature06346. Epub 2007 Nov 14.
7
Kinesin's network of chemomechanical motor cycles.驱动蛋白的化学机械运动循环网络。
Phys Rev Lett. 2007 Jun 22;98(25):258102. doi: 10.1103/PhysRevLett.98.258102. Epub 2007 Jun 20.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验