Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, 860-8556, Japan.
Eur J Radiol. 2018 Nov;108:147-154. doi: 10.1016/j.ejrad.2018.09.017. Epub 2018 Sep 14.
To evaluate the performance of a machine learning method based on texture features in multi-parametric magnetic resonance imaging (MRI) to differentiate a glioblastoma multiforme (GBM) from a primary cerebral nervous system lymphoma (PCNSL).
We included 70 patients who underwent contrast enhanced brain MRI at 3 T with brain tumors diagnosed as GBM (n = 45) and PCNSL (n = 25) in this retrospective study. Twelve histograms and texture parameters were assessed on T2-weighted images (T2WIs), apparent diffusion coefficient maps, relative cerebral blood volume (rCBV) map, and contrast-enhanced T1-weighted images (CE-T1WIs). A prediction model was developed using a machine learning method (univariate logistic regression and multivariate eXtreme gradient boosting-XGBoost) and the area under the receiver operating characteristic curve of this model was calculated via 10-fold cross validation. In addition, the performance of the machine learning method was compared with the judgments of two board certified radiologists.
With the univariate logistic regression model, the standard deviation of rCBV offered the highest AUC (0.86), followed by mean value of rCBV (0.83), skewness of CE-T1WI (0.78), mean value of CET1 (0.78), and max value of rCBV (0.77). The AUC of the XGBoost was significantly higher than the two radiologists (0.98 vs. 0.84; p < 0.01 and 0.98 vs. 0.79; p < 0.01, respectively).
The performance of machine learning based on histogram and texture features in multi-parametric MRI was superior to that of conventional cut-off method and the board certified radiologists to differentiate a GBM from a PCNSL.
评估一种基于纹理特征的机器学习方法在多参数磁共振成像(MRI)中对鉴别多形性胶质母细胞瘤(GBM)和原发性中枢神经系统淋巴瘤(PCNSL)的性能。
本回顾性研究纳入了 70 名在 3T 行增强脑 MRI 检查的脑肿瘤患者,这些患者的脑肿瘤被诊断为 GBM(n=45)和 PCNSL(n=25)。在 T2 加权图像(T2WI)、表观弥散系数图、相对脑血容量(rCBV)图和对比增强 T1 加权图像(CE-T1WI)上评估了 12 个直方图和纹理参数。使用机器学习方法(单变量逻辑回归和多变量极端梯度提升-XGBoost)建立预测模型,并通过 10 倍交叉验证计算该模型的受试者工作特征曲线下面积。此外,还将机器学习方法的性能与两位有资质的放射科医生的判断进行了比较。
在单变量逻辑回归模型中,rCBV 的标准差提供了最高的 AUC(0.86),其次是 rCBV 的平均值(0.83)、CE-T1WI 的偏度(0.78)、CE-T1 的平均值(0.78)和 rCBV 的最大值(0.77)。XGBoost 的 AUC 明显高于两位放射科医生(0.98 与 0.84,p<0.01 和 0.98 与 0.79,p<0.01)。
基于多参数 MRI 中直方图和纹理特征的机器学习方法的性能优于传统的临界值方法和有资质的放射科医生,可用于鉴别 GBM 和 PCNSL。