Suppr超能文献

由于药物不合格导致大肠杆菌和耻垢分枝杆菌利福平耐药性的演变。

Evolution of Rifampin Resistance in Escherichia coli and Mycobacterium smegmatis Due to Substandard Drugs.

机构信息

Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA.

Howard Hughes Medical Institute, Boston University, Boston, Massachusetts, USA

出版信息

Antimicrob Agents Chemother. 2018 Dec 21;63(1). doi: 10.1128/AAC.01243-18. Print 2019 Jan.

Abstract

Poor-quality medicines undermine the treatment of infectious diseases, such as tuberculosis, which require months of treatment with rifampin and other drugs. Rifampin resistance is a critical concern for tuberculosis treatment. While subtherapeutic doses of medicine are known to select for antibiotic resistance, the effect of drug degradation products on the evolution of resistance is unknown. Here, we demonstrate that substandard drugs that contain degraded active pharmaceutical ingredients select for gene alterations that confer resistance to standard drugs. We generated drug-resistant and strains by serially culturing bacteria in the presence of the rifampin degradation product rifampin quinone. We conducted Sanger sequencing to identify mutations in rifampin-resistant populations. Strains resistant to rifampin quinone developed cross-resistance to the standard drug rifampin, with some populations showing no growth inhibition at maximum concentrations of rifampin. Sequencing of the rifampin quinone-treated strains indicated that they acquired mutations in the DNA-dependent RNA polymerase B subunit. These mutations were localized in the rifampin resistance-determining region (RRDR), consistent with other reports of rifampin-resistant and mycobacteria. Rifampin quinone-treated mycobacteria also had cross-resistance to other rifamycin class drugs, including rifabutin and rifapentine. Our results strongly suggest that substandard drugs not only hinder individual patient outcomes but also restrict future treatment options by actively contributing to the development of resistance to standard medicines.

摘要

劣质药品会破坏传染病的治疗效果,例如结核病,这种疾病需要数月的利福平(rifampin)和其他药物治疗。利福平耐药性是结核病治疗的一个关键问题。虽然人们知道低于治疗剂量的药物会选择产生抗生素耐药性,但药物降解产物对耐药性演变的影响尚不清楚。在这里,我们证明含有降解活性药物成分的劣等药物会选择导致对标准药物产生耐药性的基因改变。我们通过在含有利福平降解产物利福平醌的情况下连续培养细菌来产生耐药和 菌株。我们进行了 Sanger 测序,以鉴定耐药人群中的突变。对利福平醌耐药的菌株对标准药物利福平产生交叉耐药性,有些群体在利福平的最大浓度下没有生长抑制。对利福平醌处理的菌株进行测序表明,它们在 DNA 依赖性 RNA 聚合酶 B 亚基中获得了突变。这些突变定位于利福平耐药决定区(RRDR),与其他利福平耐药 和分枝杆菌的报告一致。利福平醌处理的分枝杆菌对其他利福霉素类药物(包括利福布汀和利福喷汀)也具有交叉耐药性。我们的研究结果强烈表明,劣等药物不仅会妨碍个别患者的治疗效果,而且还会通过积极促进对标准药物的耐药性发展,限制未来的治疗选择。

相似文献

1
Evolution of Rifampin Resistance in Escherichia coli and Mycobacterium smegmatis Due to Substandard Drugs.
Antimicrob Agents Chemother. 2018 Dec 21;63(1). doi: 10.1128/AAC.01243-18. Print 2019 Jan.
2
Mutation analysis of mycobacterial rpoB genes and rifampin resistance using recombinant Mycobacterium smegmatis.
Antimicrob Agents Chemother. 2012 Apr;56(4):2008-13. doi: 10.1128/AAC.05831-11. Epub 2012 Jan 17.
3
Genetic antagonism and hypermutability in Mycobacterium smegmatis.
J Bacteriol. 2000 Jun;182(12):3331-5. doi: 10.1128/JB.182.12.3331-3335.2000.
4
In-vitro activity of rifabutin against rifampicin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations.
Clin Microbiol Infect. 2004 Jul;10(7):662-5. doi: 10.1111/j.1469-0691.2004.00917.x.
5
Molecular analysis of codon 548 in the rpoB gene involved in Mycobacterium tuberculosis resistance to rifampin.
Antimicrob Agents Chemother. 2015 Mar;59(3):1542-8. doi: 10.1128/AAC.04374-14. Epub 2014 Dec 22.
7
8
Rifabutin and rifampin resistance levels and associated rpoB mutations in clinical isolates of Mycobacterium tuberculosis complex.
Diagn Microbiol Infect Dis. 2016 Jun;85(2):177-81. doi: 10.1016/j.diagmicrobio.2016.01.019. Epub 2016 Feb 3.
10
Resistance to rifampicin: a review.
J Antibiot (Tokyo). 2014 Sep;67(9):625-30. doi: 10.1038/ja.2014.107. Epub 2014 Aug 13.

引用本文的文献

1
Expanded Gram-Negative Activity of Marinopyrrole A.
Pathogens. 2025 Mar 16;14(3):290. doi: 10.3390/pathogens14030290.
3
Broken beyond repair: TA system ParE toxins mediate effective gyrase inhibition without driving resistance.
J Bacteriol. 2025 Mar 20;207(3):e0041624. doi: 10.1128/jb.00416-24. Epub 2025 Mar 3.
4
In Silico Drug Repurposing Endorse Amprenavir, Darunavir and Saquinavir to Target Enzymes of Multidrug Resistant Uropathogenic .
Indian J Microbiol. 2024 Sep;64(3):1153-1214. doi: 10.1007/s12088-024-01282-x. Epub 2024 Apr 26.
6
Transcription Attenuation in Synthetic Promoters in Nonoverlapping Tandem Formation.
Biochemistry. 2024 Aug 20;63(16):2009-2022. doi: 10.1021/acs.biochem.4c00012. Epub 2024 Jul 12.
8
Convergent genetic adaptation of in minimal media leads to pleiotropic divergence.
Front Mol Biosci. 2024 Apr 10;11:1286824. doi: 10.3389/fmolb.2024.1286824. eCollection 2024.
9
Antimicrobial Resistance in Papua New Guinea: A Narrative Scoping Review.
Antibiotics (Basel). 2023 Nov 29;12(12):1679. doi: 10.3390/antibiotics12121679.
10
Mathematical Model for Growth and Rifampicin-Dependent Killing Kinetics of Cells.
ACS Omega. 2023 Oct 5;8(41):38452-38458. doi: 10.1021/acsomega.3c05233. eCollection 2023 Oct 17.

本文引用的文献

1
Rifabutin Resistance Associated with Double Mutations in Gene in Isolates.
Front Microbiol. 2017 Sep 14;8:1768. doi: 10.3389/fmicb.2017.01768. eCollection 2017.
2
Drug resistant TB: UK multicentre study (DRUMS): Treatment, management and outcomes in London and West Midlands 2008-2014.
J Infect. 2017 Mar;74(3):260-271. doi: 10.1016/j.jinf.2016.12.005. Epub 2016 Dec 18.
3
NQO1 and CYP450 reductase decrease the systemic exposure of rifampicin-quinone and mediate its redox cycle in rats.
J Pharm Biomed Anal. 2017 Jan 5;132:17-23. doi: 10.1016/j.jpba.2016.09.040. Epub 2016 Sep 26.
4
Enhanced Survival of Rifampin- and Streptomycin-Resistant Escherichia coli Inside Macrophages.
Antimicrob Agents Chemother. 2016 Jun 20;60(7):4324-32. doi: 10.1128/AAC.00624-16. Print 2016 Jul.
5
Degradation of Artemisinin-Based Combination Therapies Under Tropical Conditions.
Am J Trop Med Hyg. 2016 May 4;94(5):993-1001. doi: 10.4269/ajtmh.15-0665. Epub 2016 Mar 7.
6
Treatment of Tuberculosis.
N Engl J Med. 2015 Nov 26;373(22):2149-60. doi: 10.1056/NEJMra1413919.
7
PubChem Substance and Compound databases.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13. doi: 10.1093/nar/gkv951. Epub 2015 Sep 22.
8
The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin?
Emerg Microbes Infect. 2014 Mar;3(3):e17. doi: 10.1038/emi.2014.17. Epub 2014 Mar 12.
9
Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution.
Mol Biol Evol. 2014 Sep;31(9):2387-401. doi: 10.1093/molbev/msu191. Epub 2014 Jun 24.
10
Profiling of rpoB mutations and MICs for rifampin and rifabutin in Mycobacterium tuberculosis.
J Clin Microbiol. 2014 Jun;52(6):2157-62. doi: 10.1128/JCM.00691-14. Epub 2014 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验