Suppr超能文献

AutoImpute:基于自动编码器的单细胞 RNA-seq 数据插补。

AutoImpute: Autoencoder based imputation of single-cell RNA-seq data.

机构信息

Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Delhi, India.

Center for Computational Biology, Indraprastha Institute of Information Technology, Delhi, India.

出版信息

Sci Rep. 2018 Nov 5;8(1):16329. doi: 10.1038/s41598-018-34688-x.

Abstract

The emergence of single-cell RNA sequencing (scRNA-seq) technologies has enabled us to measure the expression levels of thousands of genes at single-cell resolution. However, insufficient quantities of starting RNA in the individual cells cause significant dropout events, introducing a large number of zero counts in the expression matrix. To circumvent this, we developed an autoencoder-based sparse gene expression matrix imputation method. AutoImpute, which learns the inherent distribution of the input scRNA-seq data and imputes the missing values accordingly with minimal modification to the biologically silent genes. When tested on real scRNA-seq datasets, AutoImpute performed competitively wrt., the existing single-cell imputation methods, on the grounds of expression recovery from subsampled data, cell-clustering accuracy, variance stabilization and cell-type separability.

摘要

单细胞 RNA 测序 (scRNA-seq) 技术的出现使我们能够以单细胞分辨率测量数千个基因的表达水平。然而,单个细胞中起始 RNA 的数量不足会导致大量的缺失事件,从而在表达矩阵中引入大量的零计数。为了解决这个问题,我们开发了一种基于自动编码器的稀疏基因表达矩阵插补方法。AutoImpute 学习输入 scRNA-seq 数据的固有分布,并相应地用最小的修改来插补缺失值,从而使生物上沉默的基因不受影响。在真实的 scRNA-seq 数据集上进行测试时,AutoImpute 在从亚采样数据中恢复表达、细胞聚类准确性、方差稳定性和细胞类型可分离性等方面,与现有的单细胞插补方法相比具有竞争力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验