Suppr超能文献

Scmaskgan:用于单细胞RNA测序数据缺失值插补的掩码多尺度卷积神经网络和注意力增强生成对抗网络

Scmaskgan: masked multi-scale CNN and attention-enhanced GAN for scRNA-seq dropout imputation.

作者信息

Wu You, Xu Li, Cong Xiaohong, Li Hanxiao, Li Yanli

机构信息

College of Computer Science and Technology, Harbin Engineering University, Harbin, China.

National Engineering Laboratory for Modeling and Emulation in E-Government, Beijing, China.

出版信息

BMC Bioinformatics. 2025 May 20;26(1):130. doi: 10.1186/s12859-025-06138-9.

Abstract

Single-cell RNA sequencing (scRNA-seq) enables high-resolution analysis of cellular heterogeneity, but dropout events, where gene expression is undetected in individual cells, present a significant challenge. We propose scMASKGAN, which transforms matrix imputation into a pixel restoration task to improve the recovery of missing gene expression data. Specifically, we integrate masking, convolutional neural networks (CNNs), attention mechanisms, and residual networks (ResNets) to effectively address dropout events in scRNA-seq data. The masking mechanism ensures the preservation of complete cellular information, while convolution and attention mechanisms are employed to capture both global and local features. Residual networks augment feature representation and effectively mitigate the risk of model overfitting. Additionally, cell-type labels are incorporated as constraints to guide the methods in learning more accurate cellular features. Finally, multiple experiments were conducted to evaluate the methods' performance using seven different data types and scRNA-seq data from ten neuroblastoma samples. The results demonstrate that the data imputed by scMASKGAN not only perform excellently across various evaluation metrics but also significantly enhance the effectiveness of downstream analyses, enabling a more comprehensive exploration of underlying biological information.

摘要

单细胞RNA测序(scRNA-seq)能够对细胞异质性进行高分辨率分析,但在单个细胞中未检测到基因表达的缺失事件是一个重大挑战。我们提出了scMASKGAN,它将矩阵插补转化为像素恢复任务,以提高对缺失基因表达数据的恢复能力。具体而言,我们整合了掩码、卷积神经网络(CNN)、注意力机制和残差网络(ResNet),以有效解决scRNA-seq数据中的缺失事件。掩码机制确保完整细胞信息的保留,而卷积和注意力机制则用于捕捉全局和局部特征。残差网络增强了特征表示,并有效降低了模型过拟合的风险。此外,细胞类型标签被用作约束条件,以指导该方法学习更准确的细胞特征。最后,使用七种不同的数据类型和来自十个神经母细胞瘤样本的scRNA-seq数据进行了多项实验,以评估该方法的性能。结果表明,scMASKGAN插补的数据不仅在各种评估指标上表现出色,而且显著提高了下游分析的有效性,从而能够更全面地探索潜在的生物学信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16f6/12093817/873ee43d66b2/12859_2025_6138_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验