Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
Environmental and Integrative Toxicological Sciences, Michigan State University, East Lansing, MI, USA.
Nat Microbiol. 2019 Jan;4(1):55-61. doi: 10.1038/s41564-018-0276-6. Epub 2018 Nov 5.
Small bacterial and archaeal genomes provide insights into the minimal requirements for life and are phylogenetically widespread. However, the precise environmental pressures that constrain genome size in free-living microorganisms are unknown. A study including isolates has shown that thermophiles and other bacteria with high optimum growth temperatures often have small genomes. It is unclear whether this relationship extends generally to microorganisms in nature and more specifically to microorganisms that inhabit complex and highly variable environments, such as soils. To understand the genomic traits of thermally adapted microorganisms, here we investigated metagenomes from a 45 °C gradient of temperate-to-thermal soils that lie over the ongoing Centralia, Pennsylvania (USA) coal-seam fire. We found that hot soils harboured distinct communities with small genomes and small cell sizes relative to those in ambient soils. Hot soils notably lacked genes that encode known two-component regulatory systems, and antimicrobial production and resistance genes. Our results provide field evidence for the inverse relationship between microbial genome size and temperature in a diverse, free-living community over a wide range of temperatures that support microbial life.
小型细菌和古菌基因组为生命的基本需求提供了深入的了解,并且在系统发育上广泛存在。然而,限制自由生活微生物基因组大小的确切环境压力尚不清楚。一项包括分离物的研究表明,嗜热菌和其他最佳生长温度较高的细菌通常具有较小的基因组。目前尚不清楚这种关系是否普遍适用于自然界中的微生物,更具体地说,是否适用于栖息在复杂和高度多变的环境中的微生物,如土壤。为了了解适应高温的微生物的基因组特征,我们在这里研究了宾夕法尼亚州中央(美国)正在进行的煤层火灾上方的温带到热土壤 45°C 梯度的宏基因组。我们发现,与环境土壤相比,热土壤中存在具有较小基因组和较小细胞大小的独特群落。热土壤中明显缺乏编码已知双组分调节系统、抗菌药物产生和抗性基因的基因。我们的研究结果为在支持微生物生命的广泛温度范围内,一个多样化的自由生活群落中微生物基因组大小与温度之间的反比关系提供了实地证据。