结构与动力学在无规卷曲蛋白质亲和力进化中共同作用。
Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins.
机构信息
Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden.
Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA.
出版信息
Sci Adv. 2018 Oct 24;4(10):eaau4130. doi: 10.1126/sciadv.aau4130. eCollection 2018 Oct.
In every established species, protein-protein interactions have evolved such that they are fit for purpose. However, the molecular details of the evolution of new protein-protein interactions are poorly understood. We have used nuclear magnetic resonance spectroscopy to investigate the changes in structure and dynamics during the evolution of a protein-protein interaction involving the intrinsically disordered CREBBP (CREB-binding protein) interaction domain (CID) and nuclear coactivator binding domain (NCBD) from the transcriptional coregulators NCOA (nuclear receptor coactivator) and CREBBP/p300, respectively. The most ancient low-affinity "Cambrian-like" [540 to 600 million years (Ma) ago] CID/NCBD complex contained less secondary structure and was more dynamic than the complexes from an evolutionarily younger "Ordovician-Silurian" fish ancestor (ca. 440 Ma ago) and extant human. The most ancient Cambrian-like CID/NCBD complex lacked one helix and several interdomain interactions, resulting in a larger solvent-accessible surface area. Furthermore, the most ancient complex had a high degree of millisecond-to-microsecond dynamics distributed along the entire sequences of both CID and NCBD. These motions were reduced in the Ordovician-Silurian CID/NCBD complex and further redistributed in the extant human CID/NCBD complex. Isothermal calorimetry experiments show that complex formation is enthalpically favorable and that affinity is modulated by a largely unfavorable entropic contribution to binding. Our data demonstrate how changes in structure and motion conspire to shape affinity during the evolution of a protein-protein complex and provide direct evidence for the role of structural, dynamic, and frustrational plasticity in the evolution of interactions between intrinsically disordered proteins.
在每个已确立的物种中,蛋白质-蛋白质相互作用都经过了进化,以适应其特定的功能。然而,新的蛋白质-蛋白质相互作用的进化的分子细节仍知之甚少。我们使用核磁共振波谱技术研究了涉及转录共激活因子 NCOA(核受体共激活因子)和 CREBBP/p300 分别的固有无序 CREBBP(CREB 结合蛋白)相互作用结构域(CID)和核共激活剂结合结构域(NCBD)的蛋白质-蛋白质相互作用进化过程中结构和动力学的变化。最古老的低亲和力“寒武纪样”[5.4 亿至 6 亿年前(Ma)]CID/NCBD 复合物的二级结构较少,且比来自进化较年轻的“奥陶纪-志留纪”鱼类祖先(约 4.4 亿年前)和现存人类的复合物更具动态性。最古老的寒武纪样 CID/NCBD 复合物缺少一个螺旋和几个结构域间相互作用,导致其溶剂可及表面积增大。此外,最古老的复合物具有高度的毫秒至微秒动力学,分布在 CID 和 NCBD 的整个序列中。这些运动在奥陶纪-志留纪 CID/NCBD 复合物中减少,并在现存人类 CID/NCBD 复合物中进一步重新分布。等温热量法实验表明,复合物的形成在焓上是有利的,并且亲和力通过结合的主要不利的熵贡献来调节。我们的数据证明了结构和运动的变化如何在蛋白质-蛋白质复合物的进化过程中协同作用来塑造亲和力,并为结构、动态和挫折可塑性在固有无序蛋白质之间相互作用的进化中的作用提供了直接证据。