Department of Physics, Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huai'an, People's Republic of China.
Phys Chem Chem Phys. 2018 Dec 12;20(48):30133-30139. doi: 10.1039/c8cp05426f.
We theoretically propose that Rashba-type band splitting can be achieved in binary alloyed hexagonal PX nanosheets (X = As, Sb, and Bi). The lack of inversion symmetry results in an effective electric field perpendicular to the basal plane of PX, hence, leading to Rashba-type spin-orbit coupling (SOC) in the two dimensional PX nanosheets. Since the SOC strength roughly scales quadratically with atomic number, the largest band splitting is found in PBi with a Rashba coefficient of ∼1.56 eV Å, which is a huge value among two-dimensional materials. Furthermore, tensile biaxial strain can be employed to significantly enhance the strength of SOC, for instance, a Rashba coefficient of 4.41 eV Å can be realized at a strain of 10%. The huge and strain-tunable Rashba-type SOC of PBi suggests that it holds great promise for spintronic applications.
我们从理论上提出,Rashba 型能带劈裂可以在二元合金化的六方 PX 纳米片中实现(X = As、Sb 和 Bi)。缺乏反演对称性导致垂直于 PX 基面的有效电场,从而导致二维 PX 纳米片中出现 Rashba 型自旋轨道耦合(SOC)。由于 SOC 强度大致与原子数的平方成正比,在 PBi 中发现了最大的能带劈裂,Rashba 系数约为 1.56 eV Å,这在二维材料中是一个巨大的值。此外,拉伸双轴应变可用于显著增强 SOC 的强度,例如,在应变 10%时可以实现 Rashba 系数为 4.41 eV Å。PBi 的巨大且可应变调节的 Rashba 型 SOC 表明,它在自旋电子学应用中具有很大的前景。