Suppr超能文献

具有大Rashba自旋分裂和高电子迁移率的二维Janus锑硒碲化物

Two-Dimensional Janus Antimony Selenium Telluride with Large Rashba Spin Splitting and High Electron Mobility.

作者信息

Zhang Lei, Gu Yuantong, Du Aijun

机构信息

School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia.

Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia.

出版信息

ACS Omega. 2021 Nov 18;6(47):31919-31925. doi: 10.1021/acsomega.1c04680. eCollection 2021 Nov 30.

Abstract

Janus two-dimensional materials with large Rashba spin splitting and high electron mobility are rarely reported but highly desired for nanoscale spintronics. Herein, using density functional theory calculations, we predicated Janus SbSe Te ( = 1 or 2) monolayers simultaneously harboring these fascinating properties. The predicated monolayers are indirect semiconductors with great dynamical, thermal, and mechanical stability. The spin-orbital coupling (SOC) and the out-of-plane asymmetry lead to Rashba spin splitting at the conduction band minimum (CBM), which can be effectively tuned by the small uniaxial strain. The strong band dispersion at the CBM leads to small electron effective mass, consequently enabling a high electron mobility that reaches up to 6816.63 cm V s. Moreover, Janus SbSe Te monolayers possess great light absorption capability within the visible and infrared regions of solar light. Our findings highlight promising candidates for high-speed spintronic devices and may motivate more research efforts on carrier transport and SOC effects in Janus group V and VI monolayers.

摘要

具有大Rashba自旋分裂和高电子迁移率的Janus二维材料鲜有报道,但却是纳米级自旋电子学所高度期望的。在此,通过密度泛函理论计算,我们预测Janus SbSe Te( = 1或2)单层同时具备这些迷人特性。预测的单层是具有良好动力学、热稳定性和机械稳定性的间接半导体。自旋轨道耦合(SOC)和面外不对称性导致导带最小值(CBM)处的Rashba自旋分裂,可通过小的单轴应变有效调节。CBM处的强能带色散导致小的电子有效质量,从而实现高达6816.63 cm V s的高电子迁移率。此外,Janus SbSe Te单层在太阳光的可见光和红外区域具有很强的光吸收能力。我们的研究结果突出了高速自旋电子器件的有前景的候选材料,并可能激发对Janus V族和VI族单层中载流子输运和SOC效应的更多研究工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3be6/8638011/ef408dff9981/ao1c04680_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验