Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany.
Department of Plant and Vegetation Ecology, University of Antwerp, Antwerp, Belgium.
Microb Ecol. 2019 Jul;78(1):147-158. doi: 10.1007/s00248-018-1281-2. Epub 2018 Nov 6.
Nitrification represents a central process in the cycling of nitrogen (N) which in high-fertility habitats can occasionally be undesirable. Here, we explore how arbuscular mycorrhiza (AM) impacts nitrification when N availability is not limiting to plant growth. We wanted to test which of the mechanisms that have been proposed in the literature best describes how AM influences nitrification. We manipulated the growth settings of Plantago lanceolata so that we could control the mycorrhizal state of our plants. AM induced no changes in the potential nitrification rates or the estimates of ammonium oxidizing (AO) bacteria. However, we could observe a moderate shift in the community of ammonia-oxidizers, which matched the shift we saw when comparing hyphosphere to rhizosphere soil samples and mirrored well changes in the availability of ammonium in soil. We interpret our results as support that it is competition for N that drives the interaction between AM and AO. Our experiment sheds light on an understudied interaction which is pertinent to typical management practices in agricultural systems.
硝化作用代表了氮循环的一个核心过程,在高肥力生境中,它有时是不受欢迎的。在这里,我们探讨了当氮的可利用性不限制植物生长时,丛枝菌根(AM)对硝化作用的影响。我们想测试文献中提出的哪些机制最能描述 AM 对硝化作用的影响。我们操纵了 Plantago lanceolata 的生长环境,以便能够控制我们植物的菌根状态。AM 不会改变潜在硝化速率或氨氧化(AO)细菌的估计值。然而,我们可以观察到氨氧化菌群落的适度变化,这与我们在比较根际和根际土壤样本时观察到的变化相匹配,也与土壤中铵的可用性变化很好地吻合。我们将我们的结果解释为支持 AM 和 AO 之间的相互作用是由氮竞争驱动的。我们的实验揭示了一种被忽视的相互作用,这种相互作用与农业系统中典型的管理实践有关。