Suppr超能文献

使用扩展卡尔曼滤波器降低人类心房建模的复杂性。

Complexity reduction in human atrial modeling using extended Kalman filter.

机构信息

Electrical and Computer Engineering Department, Drexel University, Philadelphia, PA, USA.

出版信息

Med Biol Eng Comput. 2019 Apr;57(4):777-794. doi: 10.1007/s11517-018-1921-1. Epub 2018 Nov 6.

Abstract

Human atrial tissue electrophysiology is modeled upon biophysical details obtained from cellular level measurements. Data collected for this purpose typically represent a unique state of the tissue. As reproducing dynamic cases such as subject-varied and/or disorder-varied electrophysiological properties is in question, such complex models are typically hard to use. Hence, there is a need for simpler yet biophysically accurate and mathematically tractable models to be used for case-specific reproductions and simulations. In this study, a scheme for parameter estimation of a phenomenological cardiac model to match a targeted behavior generated from a complex model is used. Specifically, an algorithm incorporating extended Kalman filter (EKF) into the scheme is proposed. Its performance is then compared to that of particle swarm optimization (PSO) and sequential quadratic programming (SQP), algorithms that have been widely used for parameter optimization. Both robustness and adaptability performance of the algorithms are tested through various designs. For this, reproducing action potential (AP) waveforms of varying remodeling states of atrial fibrillation (AF) at different stimulus protocols was targeted. Also, randomly generated initial parameter sets are included in the tests. In addition, AP duration (APD) restitution curve (RC) is used for a multiscale evaluation of fitting performance. Finally, wavefront propagation on 2D of a selected AF remodeling state using parameter solutions from each of the algorithms is simulated for a qualitative evaluation. In general, PSO yielded superior performances than EKF and SQP with respect to fitting AP waveforms. Considering both AP and APD RC, however, EKF yielded the best accuracies. Also, more accurate spiral wave reentry is obtained with EKF. Overall, EKF algorithm yielded the best performance in robustness and adaptability. Graphical Abstract.

摘要

人类心房组织电生理学是基于从细胞水平测量获得的生物物理细节来建模的。为此收集的数据通常代表组织的独特状态。由于重现如个体变化和/或疾病变化的电生理特性等动态情况是有问题的,因此这种复杂的模型通常难以使用。因此,需要使用更简单但具有生物物理准确性和数学可解性的模型来进行特定于案例的再现和模拟。在这项研究中,使用了一种针对现象学心脏模型的参数估计方案,以匹配来自复杂模型生成的目标行为。具体来说,提出了一种将扩展卡尔曼滤波器(EKF)纳入该方案的算法。然后将其性能与粒子群优化(PSO)和序列二次规划(SQP)算法进行比较,这些算法已广泛用于参数优化。通过各种设计测试了算法的鲁棒性和适应性性能。为此,旨在重现不同刺激方案下心房颤动(AF)重构状态的动作电位(AP)波形。此外,还包括随机生成的初始参数集。此外,还使用 AP 时程(APD)恢复曲线(RC)进行多尺度拟合性能评估。最后,使用来自每种算法的参数解决方案模拟所选 AF 重构状态的二维波阵面传播,以进行定性评估。一般来说,PSO 在拟合 AP 波形方面的性能优于 EKF 和 SQP。然而,考虑到 AP 和 APD RC,EKF 产生了最佳的准确性。此外,EKF 还获得了更准确的螺旋波折返。总的来说,EKF 算法在鲁棒性和适应性方面表现最佳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验