Jawaharlal Nehru University, New Delhi, 110067, India.
J Med Syst. 2018 Mar 16;42(5):78. doi: 10.1007/s10916-018-0931-8.
This paper presents a novel algorithm (CVSTSCSP) for determining discriminative features from an optimal combination of temporal, spectral and spatial information for motor imagery brain computer interfaces. The proposed method involves four phases. In the first phase, EEG signal is segmented into overlapping time segments and bandpass filtered through frequency filter bank of variable size subbands. In the next phase, features are extracted from the segmented and filtered data using stationary common spatial pattern technique (SCSP) that can handle the non- stationarity and artifacts of EEG signal. The univariate feature selection method is used to obtain a relevant subset of features in the third phase. In the final phase, the classifier is used to build adecision model. In this paper, four univariate feature selection methods such as Euclidean distance, correlation, mutual information and Fisher discriminant ratio and two well-known classifiers (LDA and SVM) are investigated. The proposed method has been validated using the publicly available BCI competition IV dataset Ia and BCI Competition III dataset IVa. Experimental results demonstrate that the proposed method significantly outperforms the existing methods in terms of classification error. A reduction of 76.98%, 75.65%, 73.90% and 72.21% in classification error over both datasets and both classifiers can be observed using the proposed CVSTSCSP method in comparison to CSP, SBCSP, FBCSP and CVSCSP respectively.
本文提出了一种新的算法(CVSTSCSP),用于从最优的时间、频谱和空间信息组合中确定运动想象脑机接口的判别特征。该方法包括四个阶段。在第一阶段,将 EEG 信号分成重叠的时间段,并通过可变大小子带的频带滤波器进行带通滤波。在下一阶段,使用固定共空间模式技术(SCSP)从分段和滤波数据中提取特征,该技术可以处理 EEG 信号的非平稳性和伪影。在第三阶段,使用单变量特征选择方法获得相关的特征子集。在最后一个阶段,使用分类器构建决策模型。在本文中,研究了四种单变量特征选择方法,如欧几里得距离、相关、互信息和 Fisher 判别比,以及两种著名的分类器(LDA 和 SVM)。该方法已通过公开的 BCI 竞赛 IV 数据集 Ia 和 BCI 竞赛 III 数据集 IVa 进行了验证。实验结果表明,与 CSP、SBCSP、FBCSP 和 CVSCSP 相比,该方法在分类误差方面明显优于现有方法。与 CSP、SBCSP、FBCSP 和 CVSCSP 相比,使用 CVSTSCSP 方法可以分别将两个数据集和两个分类器的分类误差降低 76.98%、75.65%、73.90%和 72.21%。