Suppr超能文献

基于麻雀搜索算法-深度信念网络的脑机接口脑电信号分类

Classification of EEG Signals Based on Sparrow Search Algorithm-Deep Belief Network for Brain-Computer Interface.

作者信息

Wang Shuai, Luo Zhiguo, Zhao Shaokai, Zhang Qilong, Liu Guangrong, Wu Dongyue, Yin Erwei, Chen Chao

机构信息

School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300380, China.

Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China.

出版信息

Bioengineering (Basel). 2023 Dec 27;11(1):30. doi: 10.3390/bioengineering11010030.

Abstract

In brain-computer interface (BCI) systems, challenges are presented by the recognition of motor imagery (MI) brain signals. Established recognition approaches have achieved favorable performance from patterns like SSVEP, AEP, and P300, whereas the classification methods for MI need to be improved. Hence, seeking a classification method that exhibits high accuracy and robustness for application in MI-BCI systems is essential. In this study, the Sparrow search algorithm (SSA)-optimized Deep Belief Network (DBN), called SSA-DBN, is designed to recognize the EEG features extracted by the Empirical Mode Decomposition (EMD). The performance of the DBN is enhanced by the optimized hyper-parameters obtained through the SSA. Our method's efficacy was tested on three datasets: two public and one private. Results indicate a relatively high accuracy rate, outperforming three baseline methods. Specifically, on the private dataset, our approach achieved an accuracy of 87.83%, marking a significant 10.38% improvement over the standard DBN algorithm. For the BCI IV 2a dataset, we recorded an accuracy of 86.14%, surpassing the DBN algorithm by 9.33%. In the SMR-BCI dataset, our method attained a classification accuracy of 87.21%, which is 5.57% higher than that of the conventional DBN algorithm. This study demonstrates enhanced classification capabilities in MI-BCI, potentially contributing to advancements in the field of BCI.

摘要

在脑机接口(BCI)系统中,运动想象(MI)脑信号的识别面临诸多挑战。已有的识别方法在稳态视觉诱发电位(SSVEP)、听觉诱发电位(AEP)和P300等模式下取得了良好的性能,而MI的分类方法仍有待改进。因此,寻求一种在MI-BCI系统中具有高精度和鲁棒性的分类方法至关重要。在本研究中,设计了一种由麻雀搜索算法(SSA)优化的深度信念网络(DBN),即SSA-DBN,用于识别通过经验模态分解(EMD)提取的脑电图(EEG)特征。通过SSA获得的优化超参数提高了DBN的性能。我们的方法在三个数据集上进行了测试:两个公共数据集和一个私有数据集。结果表明准确率相对较高,优于三种基线方法。具体而言,在私有数据集上,我们的方法准确率达到87.83%,比标准DBN算法显著提高了10.38%。对于BCI IV 2a数据集,我们记录的准确率为86.14%,比DBN算法高出9.33%。在SMR-BCI数据集中,我们的方法分类准确率达到87.21%,比传统DBN算法高5.57%。本研究证明了MI-BCI中增强的分类能力,可能有助于BCI领域的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/331e/10813095/ed7e611d50ce/bioengineering-11-00030-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验