Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80303 , United States.
Biochemistry. 2019 Mar 19;58(11):1521-1526. doi: 10.1021/acs.biochem.8b00888. Epub 2018 Nov 9.
Antibacterial resistance necessitates the development of novel treatment methods for infections. Protein aggregates have recently been applied as antimicrobials to disrupt bacterial homeostasis. Past work on protein aggregates has focused on genome mining for aggregation-prone sequences in bacterial genomes rather than on rational design of aggregating antimicrobial peptides. Here, we use a synthetic biology approach to design an artificial gene encoding a de novo aggregating antimicrobial peptide. This artificial gene, opaL (overexpressed protein aggregator lipophilic), disrupts bacterial homeostasis by expressing extremely hydrophobic peptides. When this hydrophobic sequence is disrupted by acidic residues, consequent aggregation and antimicrobial effect decrease. Further, we developed a probiotic delivery system using the broad-host range conjugative plasmid RK2 to transfer the gene from donor to recipient bacteria. We utilize RK2 to mobilize a shuttle plasmid carrying opaL by adding the RK2 origin of transfer. We show that opaL is nontoxic to the donor, allowing for maintenance and transfer since its expression is under control of a promoter with a recipient-specific T7 RNA polymerase. Upon mating of donor and recipient Escherichia coli, we observe selective growth repression in T7 polymerase-expressing recipients. This technique could be used to target desired pathogens by selecting pathogen-specific promoters to control T7 RNA polymerase expression and provides a basis for the design and delivery of aggregating antimicrobial peptides.
抗菌耐药性要求开发新的感染治疗方法。 蛋白质聚集体最近已被用作抗菌剂来破坏细菌的内稳态。 过去关于蛋白质聚集体的工作主要集中在细菌基因组中聚集倾向序列的基因组挖掘上,而不是聚集抗菌肽的合理设计上。 在这里,我们使用合成生物学方法设计了一种人工基因,该基因编码一种从头开始聚集的抗菌肽。 这种人工基因 opaL(过度表达的蛋白聚集疏水性)通过表达极其疏水性的肽来破坏细菌的内稳态。 当该疏水性序列被酸性残基破坏时,随后的聚集和抗菌作用会降低。 此外,我们使用广泛宿主范围的可接合质粒 RK2 开发了一种益生菌递送系统,以将基因从供体转移到受体细菌。 我们通过添加 RK2 转移起始点来利用 RK2 动员携带 opaL 的穿梭质粒。 我们表明 opaL 对供体无毒,允许其维持和转移,因为其表达受具有受体特异性 T7 RNA 聚合酶的启动子控制。 在供体和受体大肠杆菌的交配过程中,我们观察到在表达 T7 RNA 聚合酶的受体中选择性生长受到抑制。 该技术可通过选择针对病原体的启动子来控制 T7 RNA 聚合酶的表达,从而靶向所需的病原体,为设计和递聚集抗菌肽提供了基础。