Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Nanoscale. 2018 Nov 15;10(44):20821-20827. doi: 10.1039/c8nr04861d.
We present optical absorption spectra from the ultraviolet to the visible for size selected neutral Agn clusters (n = 5-120) embedded in solid Ne. We compare the spectra to time-dependent density functional calculations (TDDFT) that address the influence of the Ne matrix. With increasing size, several highly correlated electron excitations gradually develop into a single surface plasmon. Its energy is situated between 3.9 and 4.1 eV and varies with size according to the spherical electronic shell model. The plasmon energy is highest for clusters with atom numbers fully filling states with the lowest radial quantum number (e.g. 1s, 1p, 1d,...). TDDFT calculations for clusters with several candidate geometrical structures embedded in Ne show excellent agreement with the experimental data, demonstrating that the absorption bands depend only weakly on the exact structure of the cluster.
我们呈现了大小选择中性 Agn 团簇(n = 5-120)嵌入在固态 Ne 中从紫外到可见的光学吸收光谱。我们将光谱与考虑 Ne 基质影响的时间相关密度泛函计算(TDDFT)进行了比较。随着尺寸的增加,几个高度相关的电子激发逐渐发展成一个单一的表面等离子体。其能量位于 3.9 和 4.1 eV 之间,并且根据球形电子壳模型随尺寸而变化。对于完全填充具有最低径向量子数(例如 1s、1p、1d 等)的最低状态的原子数的团簇,等离子体能量最高。嵌入在 Ne 中的几个候选几何结构的团簇的 TDDFT 计算与实验数据非常吻合,证明吸收带仅与团簇的精确结构弱相关。
J Chem Phys. 2011-2-21
J Chem Phys. 2011-2-21
J Chem Phys. 2011-5-14
J Phys Condens Matter. 2012-7-4
J Phys Chem A. 2023-12-14
Nanoscale Adv. 2020-5-18
Nanomaterials (Basel). 2021-3-17
J Phys Chem C Nanomater Interfaces. 2021-2-11
Proc Natl Acad Sci U S A. 2019-6-17