Chaudhary Mohit, Weissker Hans-Christian
Aix-Marseille University, CNRS, CINaM UMR 7325, 13288, Marseille, France.
European Theoretical Spectroscopy Facility, .
Nat Commun. 2024 Oct 25;15(1):9225. doi: 10.1038/s41467-024-53428-6.
The localized surface-plasmon resonances of coinage-metal clusters and nanoparticles enable many applications, the conception and necessary optimization of which require precise theoretical description and understanding. However, for the size range from few-atom clusters through nanoparticles of a few nanometers, where quantum effects and atomistic structure play a significant role, none of the methods employed previously has been able to provide high-quality spectra for all sizes. The main problem is the description of the filled shells of d electrons which influence the optical response decisively. We show that the DFT+U method, employed with real-time time-dependent density-functional theory calculations (RT-TDDFT), provides spectra in good agreement with experiment for silver clusters ranging from 4 to 923 atoms, the latter representing a nanoparticle of 3 nm. Both the electron-hole-type discrete spectra of the smallest clusters and the broad plasmon resonances of the larger sizes are obtained. All calculations use the value of the effective U parameter that provides good results in bulk silver. The agreement with experiment for all sizes shows that the U parameter is surprisingly transferable. Our results open the pathway for calculations of many practically relevant systems including clusters coupled to bio-molecules or to other nano-objects.
硬币金属团簇和纳米颗粒的局域表面等离子体共振可实现多种应用,而这些应用的概念及必要的优化需要精确的理论描述和理解。然而,对于从几原子团簇到几纳米纳米颗粒的尺寸范围,其中量子效应和原子结构起着重要作用,以前使用的任何方法都无法为所有尺寸提供高质量的光谱。主要问题在于对影响光学响应的d电子满壳层的描述。我们表明,结合实时含时密度泛函理论计算(RT-TDDFT)使用的DFT+U方法,对于4至923个原子的银团簇(后者代表一个3nm的纳米颗粒)能给出与实验结果高度吻合的光谱。既能得到最小团簇的电子-空穴型离散光谱,也能得到较大尺寸团簇的宽等离子体共振。所有计算都使用了在块状银中能给出良好结果的有效U参数值。所有尺寸下与实验结果的吻合表明U参数具有惊人的可转移性。我们的结果为计算许多实际相关系统开辟了道路,包括与生物分子或其他纳米物体耦合的团簇。
ACS Omega. 2020-5-27
Nanoscale. 2014-10-21
J Chem Theory Comput. 2025-2-25
Phys Chem Chem Phys. 2023-1-18
Phys Chem Chem Phys. 2023-1-18
J Am Chem Soc. 2020-9-16
Chem Rev. 2018-9-24