Suppr超能文献

银纳米壳上氢分子光致解离中的强场效应

Strong-field effects in the photo-induced dissociation of the hydrogen molecule on a silver nanoshell.

作者信息

Koval Natalia E, Juaristi J Iñaki, Alducin Maite

机构信息

Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU) Paseo Manuel de Lardizabal 5 Donostia-San Sebastián 20018 Spain

Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Química (UPV/EHU) Apartado 1072 Donostia-San Sebastián 20080 Spain.

出版信息

Chem Sci. 2024 Oct 15;15(44):18581-91. doi: 10.1039/d4sc04110k.

Abstract

Plasmonic catalysis is a rapidly growing field of research, both from experimental and computational perspectives. Experimental observations demonstrate an enhanced dissociation rate for molecules in the presence of plasmonic nanoparticles under low-intensity visible light. The hot-carrier transfer from the nanoparticle to the molecule is often claimed as the mechanism for dissociation. However, the charge transfer time scale is on the order of a few femtoseconds and cannot be resolved experimentally. In this situation, non-adiabatic calculations can provide a solution. Such simulations, however, have their own limitations related to the computational cost. To accelerate plasmonic catalysis simulations, many researchers resort to applying high-intensity external fields to nanoparticle-molecule systems. Here, we show why such an approach can be problematic and emphasize the importance of considering strong-field effects when interpreting the results of time-dependent density functional theory simulations of plasmonic catalysis. By studying the hydrogen molecule dissociation on the surface of a silver nanoshell and analyzing the electron transfer at different field frequencies and high intensities, we demonstrate that the molecule dissociates due to multiphoton absorption and subsequent ionization.

摘要

从实验和计算的角度来看,表面等离子体催化都是一个快速发展的研究领域。实验观察表明,在低强度可见光下,表面等离子体纳米颗粒存在时分子的解离速率会提高。纳米颗粒向分子的热载流子转移通常被认为是解离的机制。然而,电荷转移的时间尺度在几飞秒量级,无法通过实验分辨。在这种情况下,非绝热计算可以提供一种解决方案。然而,此类模拟也有其与计算成本相关的局限性。为了加速表面等离子体催化模拟,许多研究人员诉诸于对纳米颗粒 - 分子系统施加高强度外场。在此,我们展示了为何这种方法可能存在问题,并强调在解释表面等离子体催化的含时密度泛函理论模拟结果时考虑强场效应的重要性。通过研究银纳米壳表面的氢分子解离,并分析不同场频率和高强度下的电子转移,我们证明分子是由于多光子吸收及随后的电离而解离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/004d/11559406/985128af6695/d4sc04110k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验