Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
Present address: Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4, 14195, Berlin, Germany.
Angew Chem Int Ed Engl. 2019 Jan 2;58(1):332-337. doi: 10.1002/anie.201811029. Epub 2018 Nov 28.
Ion-protein interactions are important for protein function, yet challenging to rationalize owing to the multitude of possible ion-protein interactions. To explore specific ion effects on protein binding sites, we investigate the interaction of different salts with the zwitterionic peptide triglycine in solution. Dielectric spectroscopy shows that salts affect the peptide's reorientational dynamics, with a more pronounced effect for denaturing cations (Li , guanidinium (Gdm )) and anions (I , SCN ) than for weakly denaturing ones (K , Cl ). The effects of Gdm and Li were found to be comparable. Molecular dynamics simulations confirm the enhanced binding of Gdm and Li to triglycine, yet with a different binding geometry: While Li predominantly binds to the C-terminal carboxylate group, bidentate binding to the terminus and the nearest amide is particularly important for Gdm . This bidentate binding markedly affects peptide conformation, and may help to explain the high denaturation activity of Gdm salts.
离子-蛋白质相互作用对于蛋白质功能至关重要,但由于可能存在多种离子-蛋白质相互作用,因此难以进行推理。为了探究特定离子对蛋白质结合部位的影响,我们研究了不同盐与两性离子肽三甘氨酸在溶液中的相互作用。介电光谱表明,盐会影响肽的重排动力学,对变性阳离子(Li+、胍鎓(Gdm+))和阴离子(I-、SCN-)的影响比弱变性盐(K+、Cl-)更为显著。发现 Gdm+和 Li+的作用相当。分子动力学模拟证实了 Gdm+和 Li+与三甘氨酸的结合增强,但结合几何形状不同:Li+主要与 C 末端羧酸盐结合,而 Gdm+则对末端和最近的酰胺进行双配位结合特别重要。这种双配位显著影响肽构象,并可能有助于解释 Gdm 盐的高变性活性。