Fritz Haber Institute of the Max-Planck Society, Berlin, Germany.
IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, Madrid, Spain.
Nat Chem. 2022 Sep;14(9):1031-1037. doi: 10.1038/s41557-022-00977-2. Epub 2022 Jun 30.
The solvation of ions changes the physical, chemical and thermodynamic properties of water, and the microscopic origin of this behaviour is believed to be ion-induced perturbation of water's hydrogen-bonding network. Here we provide microscopic insights into this process by monitoring the dissipation of energy in salt solutions using time-resolved terahertz-Raman spectroscopy. We resonantly drive the low-frequency rotational dynamics of water molecules using intense terahertz pulses and probe the Raman response of their intermolecular translational motions. We find that the intermolecular rotational-to-translational energy transfer is enhanced by highly charged cations and is drastically reduced by highly charged anions, scaling with the ion surface charge density and ion concentration. Our molecular dynamics simulations reveal that the water-water hydrogen-bond strength between the first and second solvation shells of cations increases, while it decreases around anions. The opposite effects of cations and anions on the intermolecular interactions of water resemble the effects of ions on the stabilization and denaturation of proteins.
离子的溶剂化改变了水的物理、化学和热力学性质,而这种行为的微观起源被认为是离子对水氢键网络的扰动。在这里,我们通过使用太赫兹拉曼光谱仪实时监测盐溶液中能量的耗散,提供了对此过程的微观见解。我们使用强太赫兹脉冲共振驱动水分子的低频转动动力学,并探测它们分子间平移运动的拉曼响应。我们发现,高电荷阳离子增强了分子间的转动到平移能量转移,而高电荷阴离子则大大降低了这种能量转移,其与离子表面电荷密度和离子浓度成正比。我们的分子动力学模拟表明,阳离子第一和第二溶剂化壳层之间的水分子氢键强度增加,而阴离子周围的氢键强度则降低。阳离子和阴离子对水的分子间相互作用的相反影响类似于离子对蛋白质稳定和变性的影响。