Suppr超能文献

基于学习的心脏磁共振图像质量控制。

Learning-Based Quality Control for Cardiac MR Images.

出版信息

IEEE Trans Med Imaging. 2019 May;38(5):1127-1138. doi: 10.1109/TMI.2018.2878509. Epub 2018 Nov 1.

Abstract

The effectiveness of a cardiovascular magnetic resonance (CMR) scan depends on the ability of the operator to correctly tune the acquisition parameters to the subject being scanned and on the potential occurrence of imaging artifacts, such as cardiac and respiratory motion. In the clinical practice, a quality control step is performed by visual assessment of the acquired images; however, this procedure is strongly operator-dependent, cumbersome, and sometimes incompatible with the time constraints in clinical settings and large-scale studies. We propose a fast, fully automated, and learning-based quality control pipeline for CMR images, specifically for short-axis image stacks. Our pipeline performs three important quality checks: 1) heart coverage estimation; 2) inter-slice motion detection; 3) image contrast estimation in the cardiac region. The pipeline uses a hybrid decision forest method-integrating both regression and structured classification models-to extract landmarks and probabilistic segmentation maps from both long- and short-axis images as a basis to perform the quality checks. The technique was tested on up to 3000 cases from the UK Biobank and on 100 cases from the UK Digital Heart Project and validated against manual annotations and visual inspections performed by expert interpreters. The results show the capability of the proposed pipeline to correctly detect incomplete or corrupted scans (e.g., on UK Biobank, sensitivity and specificity, respectively, 88% and 99% for heart coverage estimation and 85% and 95% for motion detection), allowing their exclusion from the analyzed dataset or the triggering of a new acquisition.

摘要

心脏磁共振(CMR)扫描的有效性取决于操作人员将采集参数正确调整到被扫描对象的能力,以及成像伪影(如心脏和呼吸运动)的潜在发生。在临床实践中,通过对获得的图像进行视觉评估来执行质量控制步骤;然而,该程序强烈依赖于操作人员,繁琐,并且有时与临床环境和大规模研究中的时间限制不兼容。我们提出了一种用于 CMR 图像的快速、全自动、基于学习的质量控制管道,特别是用于短轴图像堆栈。我们的管道执行三个重要的质量检查:1)心脏覆盖估计;2)切片间运动检测;3)心脏区域的图像对比度估计。该管道使用混合决策森林方法-集成回归和结构化分类模型-从长轴和短轴图像中提取地标和概率分割图,作为执行质量检查的基础。该技术在英国生物银行的多达 3000 个病例和英国数字心脏项目的 100 个病例上进行了测试,并针对手动注释和专家解释器进行的视觉检查进行了验证。结果表明,所提出的管道能够正确检测不完整或损坏的扫描(例如,在英国生物银行中,心脏覆盖估计的灵敏度和特异性分别为 88%和 99%,运动检测的灵敏度和特异性分别为 85%和 95%),允许将其从分析数据集中排除或触发新的采集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验