Suppr超能文献

自动化体内亚赫兹粘弹性分析(SAVE)用于评估乳腺病变。

Automated In Vivo Sub-Hertz Analysis of Viscoelasticity (SAVE) for Evaluation of Breast Lesions.

出版信息

IEEE Trans Biomed Eng. 2018 Oct;65(10):2237-2247. doi: 10.1109/TBME.2017.2787679. Epub 2017 Dec 27.

Abstract

We present an automated method for acquiring images and contrast parameters based on mechanical properties of breast lesions and surrounding tissue at load frequencies less than 1 Hz. The method called sub-Hertz analysis of viscoelasticity (SAVE) uses a compression device integrated with ultrasound imaging to perform in vivo ramp-and-hold uniaxial creep-like test on human breast in vivo. It models the internal deformations of tissues under constant surface stress as a linear viscoelastic response. We first discuss different aspects of our unique measurement approach and the expected variability of the viscoelastic parameters estimated based on a simplified one-dimensional reconstruction model. Finite-element numerical analysis is used to justify the advantages of using imaging contrast over viscoelasticity values. We then present the results of SAVE applied to a group of patients with breast masses undergoing biopsy.

摘要

我们提出了一种基于病变和周围组织的机械性能,在低于 1Hz 的加载频率下获取图像和对比参数的自动化方法。该方法称为次赫兹粘弹性分析(SAVE),使用一种与超声成像集成的压缩设备,对人体乳房进行体内斜坡和保持单轴类蠕变试验。它将组织的内部变形建模为恒表面应力下的线性粘弹性响应。我们首先讨论了我们独特测量方法的不同方面,以及基于简化的一维重建模型估计的粘弹性参数的预期变化性。有限元数值分析用于证明使用成像对比而不是粘弹性值的优势。然后我们展示了 SAVE 在一组接受活检的乳房肿块患者中的应用结果。

相似文献

1
Automated In Vivo Sub-Hertz Analysis of Viscoelasticity (SAVE) for Evaluation of Breast Lesions.
IEEE Trans Biomed Eng. 2018 Oct;65(10):2237-2247. doi: 10.1109/TBME.2017.2787679. Epub 2017 Dec 27.
2
Multi-parameter Sub-Hertz Analysis of Viscoelasticity With a Quality Metric for Differentiation of Breast Masses.
Ultrasound Med Biol. 2020 Dec;46(12):3393-3403. doi: 10.1016/j.ultrasmedbio.2020.08.004. Epub 2020 Sep 9.
3
3-D visualization and non-linear tissue classification of breast tumors using ultrasound elastography in vivo.
Ultrasound Med Biol. 2014 Jul;40(7):1490-502. doi: 10.1016/j.ultrasmedbio.2014.02.002. Epub 2014 Apr 24.
4
Quantitative evaluation of peripheral tissue elasticity for ultrasound-detected breast lesions.
Clin Radiol. 2016 Sep;71(9):896-904. doi: 10.1016/j.crad.2016.06.104. Epub 2016 Jun 24.
6
Computer-assisted assessment of ultrasound real-time elastography: initial experience in 145 breast lesions.
Eur J Radiol. 2014 Jan;83(1):e1-7. doi: 10.1016/j.ejrad.2013.09.009. Epub 2013 Sep 23.
7
Rheological assessment of a polymeric spherical structure using a three-dimensional shear wave scattering model in dynamic spectroscopy elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Feb;61(2):277-87. doi: 10.1109/TUFFC.2014.6722613.
8
Large-Strain 3-D in Vivo Breast Ultrasound Strain Elastography Using a Multi-compression Strategy and a Whole-Breast Scanning System.
Ultrasound Med Biol. 2019 Dec;45(12):3145-3159. doi: 10.1016/j.ultrasmedbio.2019.08.013. Epub 2019 Sep 21.
9
Ultrasonic measurements of breast viscoelasticity.
Med Phys. 2007 Dec;34(12):4757-67. doi: 10.1118/1.2805258.
10
Virtual Breast Quasi-static Elastography (VBQE).
Ultrason Imaging. 2017 Mar;39(2):108-125. doi: 10.1177/0161734616662227. Epub 2016 Aug 11.

引用本文的文献

1
The impact of tumor microenvironment: unraveling the role of physical cues in breast cancer progression.
Cancer Metastasis Rev. 2024 Jun;43(2):823-844. doi: 10.1007/s10555-024-10166-x. Epub 2024 Jan 19.
3
A Force-Matched Approach to Large-Strain Nonlinearity in Elasticity Imaging for Breast Lesion Characterization.
IEEE Trans Biomed Eng. 2024 Jan;71(1):367-374. doi: 10.1109/TBME.2023.3305986. Epub 2023 Dec 22.
4
The interplay between physical cues and mechanosensitive ion channels in cancer metastasis.
Front Cell Dev Biol. 2022 Sep 7;10:954099. doi: 10.3389/fcell.2022.954099. eCollection 2022.
6
Multi-parameter Sub-Hertz Analysis of Viscoelasticity With a Quality Metric for Differentiation of Breast Masses.
Ultrasound Med Biol. 2020 Dec;46(12):3393-3403. doi: 10.1016/j.ultrasmedbio.2020.08.004. Epub 2020 Sep 9.
7
Non-invasive imaging of Young's modulus and Poisson's ratio in cancers in vivo.
Sci Rep. 2020 Apr 29;10(1):7266. doi: 10.1038/s41598-020-64162-6.
8
Why Are Viscosity and Nonlinearity Bound to Make an Impact in Clinical Elastographic Diagnosis?
Sensors (Basel). 2020 Apr 22;20(8):2379. doi: 10.3390/s20082379.
9
Data-Driven Elasticity Imaging Using Cartesian Neural Network Constitutive Models and the Autoprogressive Method.
IEEE Trans Med Imaging. 2019 May;38(5):1150-1160. doi: 10.1109/TMI.2018.2879495. Epub 2018 Nov 5.
10
Viscoelastic parameters as discriminators of breast masses: Initial human study results.
PLoS One. 2018 Oct 12;13(10):e0205717. doi: 10.1371/journal.pone.0205717. eCollection 2018.

本文引用的文献

1
Automated Compression Device for Viscoelasticity Imaging.
IEEE Trans Biomed Eng. 2017 Jul;64(7):1535-1546. doi: 10.1109/TBME.2016.2612541. Epub 2016 Sep 22.
2
Strain Elastography Ultrasound: An Overview with Emphasis on Breast Cancer Diagnosis.
Diagnostics (Basel). 2013 Feb 25;3(1):117-25. doi: 10.3390/diagnostics3010117.
3
Indentation Analysis of Biphasic Viscoelastic Hydrogels.
Mech Mater. 2016 Jan 1;92:175-184. doi: 10.1016/j.mechmat.2015.09.010.
5
Sonographic breast elastography: a primer.
J Ultrasound Med. 2012 May;31(5):773-83. doi: 10.7863/jum.2012.31.5.773.
6
Sonoelastography for 1,786 non-palpable breast masses: diagnostic value in the decision to biopsy.
Eur Radiol. 2012 May;22(5):1033-40. doi: 10.1007/s00330-011-2341-x. Epub 2011 Nov 25.
7
Imaging the elastic properties of tissue: the 20 year perspective.
Phys Med Biol. 2011 Jan 7;56(1):R1-R29. doi: 10.1088/0031-9155/56/1/R01. Epub 2010 Nov 30.
8
Breast ultrasound elastography--results of 193 breast lesions in a prospective study with histopathologic correlation.
Eur J Radiol. 2011 Mar;77(3):450-6. doi: 10.1016/j.ejrad.2009.08.026. Epub 2009 Sep 20.
9
Ultrasonic viscoelasticity imaging of nonpalpable breast tumors: preliminary results.
Acad Radiol. 2008 Dec;15(12):1526-33. doi: 10.1016/j.acra.2008.05.023.
10
A theoretical framework for performance characterization of elastography: the strain filter.
IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44(1):164-72. doi: 10.1109/58.585212.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验