Suppr超能文献

一种用于双天线 GPS/INS 车载导航系统的改进扩展卡尔曼滤波器。

A Modified Extended Kalman Filter for a Two-Antenna GPS/INS Vehicular Navigation System.

机构信息

School of Geomatics, Liaoning Technical University, Fuxin 123000, China.

State Key Laboratory of Satellite Navigation System and Equipment Technology, Shijiazhuang 050081, China.

出版信息

Sensors (Basel). 2018 Nov 6;18(11):3809. doi: 10.3390/s18113809.

Abstract

Recently, the integration of an inertial navigation system (INS) and the Global Positioning System (GPS) with a two-antenna GPS receiver has been suggested to improve the stability and accuracy in harsh environments. As is well known, the statistics of state process noise and measurement noise are critical factors to avoid numerical problems and obtain stable and accurate estimates. In this paper, a modified extended Kalman filter (EKF) is proposed by properly adapting the statistics of state process and observation noises through the innovation-based adaptive estimation (IAE) method. The impact of innovation perturbation produced by measurement outliers is found to account for positive feedback and numerical issues. Measurement noise covariance is updated based on a remodification algorithm according to measurement reliability specifications. An experimental field test was performed to demonstrate the robustness of the proposed state estimation method against dynamic model errors and measurement outliers.

摘要

最近,有人提出将惯性导航系统 (INS) 和全球定位系统 (GPS) 与具有两个天线的 GPS 接收器集成,以提高在恶劣环境中的稳定性和准确性。众所周知,状态过程噪声和测量噪声的统计数据是避免数值问题和获得稳定、准确估计的关键因素。在本文中,通过基于创新的自适应估计 (IAE) 方法,适当调整状态过程和观测噪声的统计数据,提出了一种改进的扩展卡尔曼滤波器 (EKF)。研究发现,由测量异常值产生的创新扰动会导致正反馈和数值问题。根据测量可靠性规范,基于重新建模算法对测量噪声协方差进行更新。进行了现场实验测试,以证明所提出的状态估计方法对动态模型误差和测量异常值具有鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验